Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (3): 1629-1664.doi: 10.1007/s42967-023-00294-6
• ORIGINAL PAPERS • Previous Articles Next Articles
Lorenzo Micalizzi1, Davide Torlo2
Received:
2022-10-06
Revised:
2023-05-18
Accepted:
2023-06-25
Published:
2024-12-20
Contact:
Lorenzo Micalizzi,lorenzo.micalizzi@math.uzh.ch;Davide Torlo,davide.torlo@sissa.it
E-mail:lorenzo.micalizzi@math.uzh.ch;davide.torlo@sissa.it
Supported by:
CLC Number:
Lorenzo Micalizzi, Davide Torlo. A New Efficient Explicit Deferred Correction Framework: Analysis and Applications to Hyperbolic PDEs and Adaptivity[J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1629-1664.
1. Abgrall, R.: Residual distribution schemes: current status and future trends. Comput. Fluids 35(7), 641–669 (2006) 2. Abgrall, R.: High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. J. Sci. Comput. 73(2/3), 461–494 (2017) 3. Abgrall, R., Ivanova, K.: Staggered residual distribution scheme for compressible flow. arXiv: 2111. 10647 (2022) 4. Abgrall, R., Bacigaluppi, P., Tokareva, S.: High-order residual distribution scheme for the timedependent Euler equations of fluid dynamics. Comput. Math. Appl. 78(2), 274–297 (2019) 5. Abgrall, R., Le Mélédo, E., Öffner, P., Torlo, D.: Relaxation deferred correction methods and their applications to residual distribution schemes. SMAI J. Comput. Math. 8, 125–160 (2022) 6. Abgrall, R., Torlo, D.: High order asymptotic preserving deferred correction implicit-explicit schemes for kinetic models. SIAM J. Sci. Comput. 42(3), 816–845 (2020) 7. Bacigaluppi, P., Abgrall, R., Tokareva, S.: “A posteriori’’ limited high order and robust schemes for transient simulations of fluid flows in gas dynamics. J. Comput. Phys. 476, 111898 (2023) 8. Boscarino, S., Qiu, J.-M.: Error estimates of the integral deferred correction method for stiff problems. ESAIM Math. Model. Numer. Anal. 50(4), 1137–1166 (2016) 9. Boscarino, S., Qiu, J.-M., Russo, G.: Implicit-explicit integral deferred correction methods for stiff problems. SIAM J. Sci. Comput. 40(2), 787–816 (2018) 10. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Auckland (2016) 11. Cheli, F., Diana, G.: Advanced Dynamics of Mechanical Systems. Springer, Cham (2015) 12. Christlieb, A., Ong, B., Qiu, J.-M.: Comments on high-order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 4(1), 27–56 (2009) 13. Christlieb, A., Ong, B., Qiu, J.-M.: Integral deferred correction methods constructed with high order Runge-Kutta integrators. Math. Comput. 79(270), 761–783 (2010) 14. Ciallella, M., Micalizzi, L., Öffner, P., Torlo, D.: An arbitrary high order and positivity preserving method for the shallow water equations. Comput. Fluids 247, 105630 (2022) 15. Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38(6), 2047–2078 (2001) 16. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40(2), 241–266 (2000) 17. Fox, L., Goodwin, E.: Some new methods for the numerical integration of ordinary differential equations. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 373–388. Cambridge University Press, Cambridge (1949) 18. Han Veiga, M., Öffner, P., Torlo, D.: DeC and ADER: similarities, differences and a unified framework. J. Sci. Comput. 87(1), 1–35 (2021) 19. Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214(2), 633–656 (2006) 20. Jund, S., Salmon, S.: Arbitrary high-order finite element schemes and high-order mass lumping. Int. J. Appl. Math. Comput. Sci. 17(3), 375–393 (2007) 21. Ketcheson, D., Bin Waheed, U.: A comparison of high-order explicit Runge-Kutta, extrapolation, and deferred correction methods in serial and parallel. Commun. Appl. Math. Comput. Sci. 9(2), 175–200 (2014) 22. Layton, A.T., Minion, M.L.: Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys. 194(2), 697–715 (2004) 23. Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT Numer. Math. 45(2), 341–373 (2005) 24. Liu, Y., Shu, C.-W., Zhang, M.: Strong stability preserving property of the deferred correction time discretization. J. Comput. Math. 26(5), 633–656 (2008) 25. Micalizzi, L., Torlo, D., Boscheri, W.: Efficient iterative arbitrary high order methods: an adaptive bridge between low and high order. arXiv: 2212. 07783 (2022) 26. Michel, S., Torlo, D., Ricchiuto, M., Abgrall, R.: Spectral analysis of continuous FEM for hyperbolic PDEs: influence of approximation, stabilization, and time-stepping. J. Sci. Comput. 89(2), 1–41 (2021) 27. Michel, S., Torlo, D., Ricchiuto, M., Abgrall, R.: Spectral analysis of high order continuous FEM for hyperbolic PDEs on triangular meshes: influence of approximation, stabilization, and time-stepping. J. Sci. Comput. 94(3), 49 (2023) 28. Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1(3), 471–500 (2003) 29. Minion, M.L.: Semi-implicit projection methods for incompressible flow based on spectral deferred corrections. Appl. Numer. Math. 48(3/4), 369–387 (2004) 30. Minion, M.L.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2011) 31. Öffner, P., Torlo, D.: Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. Appl. Numer. Math. 153, 15–34 (2020) 32. Pasquetti, R., Rapetti, F.: Cubature points based triangular spectral elements: an accuracy study. J. Math. Stud. 51(1), 15–25 (2018) 33. Ricchiuto, M., Abgrall, R.: Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys. 229(16), 5653–5691 (2010) 34. Ricchiuto, M., Torlo, D.: Analytical travelling vortex solutions of hyperbolic equations for validating very high order schemes. arXiv: 2109. 10183 (2021) 35. Speck, R., Ruprecht, D., Emmett, M., Minion, M., Bolten, M., Krause, R.: A multi-level spectral deferred correction method. BIT Numer. Math. 55(3), 843–867 (2015) 36. Torlo, D.: Hyperbolic problems: high order methods and model order reduction. PhD thesis, University Zurich (2020) 37. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, vol. 375. Springer, Berlin (1996) |
[1] | Mária Lukáčová-Medvid'ová, Yuhuan Yuan. Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2215-2238. |
[2] | Saray Busto, Michael Dumbser. A New Class of Simple, General and Efficient Finite Volume Schemes for Overdetermined Thermodynamically Compatible Hyperbolic Systems [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1742-1778. |
[3] | Jingcheng Lu, Eitan Tadmor. Revisting High-Resolution Schemes with van Albada Slope Limiter [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1924-1953. |
[4] | Michel Bergmann, Afaf Bouharguane, Angelo Iollo, Alexis Tardieu. High Order ADER-IPDG Methods for the Unsteady Advection-Diffusion Equation [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1954-1977. |
[5] | Dinshaw S. Balsara, Deepak Bhoriya, Chi-Wang Shu, Harish Kumar. Efficient Finite Difference WENO Scheme for Hyperbolic Systems with Non-conservative Products [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 907-962. |
[6] | Hailiang Liu, Jia-Hao He, Xuping Tian. Anderson Acceleration of Gradient Methods with Energy for Optimization Problems [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 1299-1318. |
[7] | Maohui Lyu, Vrushali A. Bokil, Yingda Cheng, Fengyan Li. Energy Stable Nodal DG Methods for Maxwell’s Equations of Mixed-Order Form in Nonlinear Optical Media [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 30-63. |
[8] | Joseph Hunter, Zheng Sun, Yulong Xing. Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 658-687. |
[9] | Changpin Li, Dongxia Li, Zhen Wang. L1/LDG Method for the Generalized Time-Fractional Burgers Equation in Two Spatial Dimensions [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1299-1322. |
[10] | Dakang Cen, Zhibo Wang, Seakweng Vong. Efficient Finite Difference/Spectral Method for the Time Fractional Ito Equation Using Fast Fourier Transform Technic [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1591-1600. |
[11] | Robin Ming Chen, Feimin Huang, Dehua Wang, Difan Yuan. On the Vortex Sheets of Compressible Flows [J]. Communications on Applied Mathematics and Computation, 2023, 5(3): 967-986. |
[12] | Xian-ting Wang, Yun-guang Lu, Naoki Tsuge. Global Existence and Stability of Solutions to River Flow System [J]. Communications on Applied Mathematics and Computation, 2023, 5(3): 1247-1255. |
[13] | R. Abgrall, J. Nordström, P. Öffner, S. Tokareva. Analysis of the SBP-SAT Stabilization for Finite Element Methods Part II: Entropy Stability [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 573-595. |
[14] | Linjin Li, Jingmei Qiu, Giovanni Russo. A High-Order Semi-Lagrangian Finite Difference Method for Nonlinear Vlasov and BGK Models [J]. Communications on Applied Mathematics and Computation, 2023, 5(1): 170-198. |
[15] | F. S. Mousavinejad, M. FatehiNia, A. Ebrahimi. P-Bifurcation of Stochastic van der Pol Model as a Dynamical System in Neuroscience [J]. Communications on Applied Mathematics and Computation, 2022, 4(4): 1293-1312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||