Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (4): 2431-2454.doi: 10.1007/s42967-022-00243-9
• ORIGINAL PAPERS • Previous Articles Next Articles
Lin Mu1, Xiu Ye2, Shangyou Zhang3, Peng Zhu4
Received:
2022-04-21
Revised:
2022-11-01
Accepted:
2022-12-06
Published:
2024-12-20
Contact:
Lin Mu,E-mail:linmu@ualr.edu;Xiu Ye,E-mail:xxye@ualr.edu;Shangyou Zhang,E-mail:szhang@udel.edu;Peng Zhu,E-mail:pzh@zjxu.edu.cn
E-mail:linmu@ualr.edu;xxye@ualr.edu;szhang@udel.edu;pzh@zjxu.edu.cn
Lin Mu, Xiu Ye, Shangyou Zhang, Peng Zhu. A DG Method for the Stokes Equations on Tensor Product Meshes with [Pk]d-Pk-1 Element[J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2431-2454.
1. Al-Taweel, A., Wang, X.: A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method. Appl. Numer. Math. 150, 444-451 (2020) 2. Baker, G.A., Jureidini, W.N., Karakashian, O.A.: Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Numer. Anal. 27, 1466-1485 (1990) 3. Brennecke, C., Linke, A., Merdon, C., Schöberl, J.: Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions. J. Comput.Math. 33, 191-208 (2015) 4. Brezzi, F., Boffi, D., Demkowicz, L., Durán, R.G., Falk, R.S., Fortin, M.M.: Mixed finite elements,compatibility conditions, and applications. Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26-July 1, 2008. Springer, Berlin (2008) 5. Brezzi, F., Falk, R.S.: Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28, 581-590 (1991) 6. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Elements. Springer, New York (1991) 7. Chapelle, D., Bathe, K.J.: The inf-sup test. Comput. Struct. 47, 537-545 (1993) 8. Chen, L., Wang, M., Zhong, L.: Convergence analysis of triangular MAC schmes for two dimensional Stokes equations. J. Sci. Comput. 63, 716-744 (2015) 9. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31, 61-73 (2007) 10. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319-343 (2002) 11. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. ESAIM: M2AN. 7, 33-75 (1973)12. Falk, R., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51, 1308-1326 (2013) 13. Gallistl, D.: Computation of the inf-sup constant for the divergence. Proc. Appl. Math. Mech. 18(2018). https:// doi. org/ 10. 1002/ pamm. 20180 0093 14. Girault, V., Raviart, P.: Finite Element Methods for the Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin (1986) 15. Guzmán, J., Neilan, M.: Conforming and divergence free Stokes elements on general triangular meshes. Math. Comp. 83, 15-36 (2014) 16. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements in three dimensions.IMA J. Numer. Anal. 34, 1489-1508 (2014) 17. Hansbo, P., Larson, M.G.: Discontinuous finite element methods for incompressible and nearly incompressible elasticity by use of Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191,1895-1908 (2002) 18. Jenkins, E., John, V., Linke, A., Rebholz, L.: On the parameter choice in grad-div stabilization for the Stokes equations. Adv. Comput. Math. 40, 491-516 (2014) 19. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.: On the divergence constraint in mixed finite element mehtods for incompressible flows. SIAM Rev. 59, 492-544 (2017) 20. Karakashian, O.A., Jureidini, W.N.: A nonconforming finite element method for the stationary Navier-Stokes equations. SIAM J. Numer. Anal. 35, 93-120 (1998) 21. Lederer, P.: Pressure-robust discretizations for Navier-Stokes equations: divergence-free reconstruction for Taylor-Hood elements and high order hybrid discontinuous Galerkin methods, master’s thesis, Vienna Technical University (2016) 22. Lederer, P., Schöberl, J.: Polynomial robust stability analysis for h(div)-conforming finite elements for the Stokes equations. IMA J. Numer. Anal. 38, 1832-1860 (2018) 23. Linke, A.: A divergence-free velocity reconstruction for incompressible flows. C. R. Math. Acad.Sci. Paris 350, 837-840 (2012) 24. Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782-800 (2014) 25. Linke, A., Matthies, G., Tobiska, L.: Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors. ESAIM: M2AN 50,289-309 (2016) 26. Mu, L., Wang, X., Ye, X.: A modified weak Galerkin finite element method for the Stokes equations. J. Comput. Appl. Math. 275, 79-90 (2015) 27. Mu, L.: Pressure robust weak Galerkin finite element methods for Stokes problems. SIAM J. Sci.Comput. 42, B608-B629 (2020) 28. Mu, L., Ye, X., Zhang, S.: A stabilizer-free, pressure-robust, and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh. SIAM J. Sci. Comput. 43(4),A2614-A2637 (2021) 29. Mu, L., Ye, X., Zhang, S.: Development of pressure-robust discontinuous Galerkin finite element methods for the Stokes problem. J. Sci. Comput. 89 (2021) 30. Olshanskii, M., Olshanskii, A.: Grad-div stabilization for Stokes equations. Math. Comp. 73, 1699-1718 (2004) 31. Olshanskii, M., Lube, G., Heister, T., Löwe, J.: Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 3975-3988 (2009) 32. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Soc. Ind. Appl. Math, Philadelphia (2008) 33. Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. SIAM J.Numer. Anal. 40, 2171-2194 (2002) 34. Schötzau, D., Schwab, C., Toselli, A.: Stabilized hp-DGFEM for incompressible flow. Math. Models Methods Appl. Sci. 13, 1413-1436 (2003) 35. Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows II: geometric edge meshes. IMA J. Numer. Anal. 24, 273-308 (2004) 36. Scott, L., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM: M2AN 19, 111-143 (1985) 37. Toselli, A.: hp-discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci. 12, 1565-1597 (2002) 38. Wang, J., Ye, X.: New finite element methods in computational fluid dynamics by H(div) elements.SIAM J. Numer. Anal. 45, 1269-1286 (2007)39. Zhang, S.: A new family of stable mixed finite elements for 3D Stokes equations. Math. Comp. 74,543-554 (2005) 40. Zhang, S.: On the P1 Powell-Sabin divergence-free finite element for the Stokes equations. J. Comput.Math. 26, 456-470 (2008) 41. Zhang, S.: Divergence-free finite elements on tetrahedral grids for k≤6. Math. Comp. 80, 669-695(2011) 42. Zhang, S.: Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids-. Calcolo 48,211-244 (2011) |
[1] | Baiying Dong, Zhilin Li, Juan Ruiz-álvarez. A Stable FE-FD Method for Anisotropic Parabolic PDEs with Moving Interfaces [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 992-1012. |
[2] | Shangyou Zhang. Robust Falk-Neilan Finite Elements for the Reissner-Mindlin Plate [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1697-1712. |
[3] | Xiu Ye, Shangyou Zhang. Four-Order Superconvergent Weak Galerkin Methods for the Biharmonic Equation on Triangular Meshes [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1323-1338. |
[4] | Jean-Luc Guermond, Bojan Popov, Laura Saavedra. Second-Order Invariant Domain Preserving ALE Approximation of Euler Equations [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 923-945. |
[5] | Mohammed Homod Hashim, Akil J. Harfash. Finite Element Analysis of Attraction-Repulsion Chemotaxis System. Part II: Time Convergence, Error Analysis and Numerical Results [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 1057-1104. |
[6] | Mohammed Homod Hashim, Akil J. Harfash. Finite Element Analysis of Attraction-Repulsion Chemotaxis System. Part I: Space Convergence [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 1011-1056. |
[7] | Ohannes A. Karakashian, Michael M. Wise. A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 823-854. |
[8] | Ahmed Al-Taweel, Yinlin Dong, Saqib Hussain, Xiaoshen Wang. A Weak Galerkin Harmonic Finite Element Method for Laplace Equation [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 527-544. |
[9] | Ming Cui, Xiu Ye, Shangyou Zhang. A Modified Weak Galerkin Finite Element Method for the Biharmonic Equation on Polytopal Meshes [J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 91-105. |
[10] | Xiangcheng Zheng, V. J. Ervin, Hong Wang. An Indirect Finite Element Method for Variable-Coefcient Space-Fractional Difusion Equations and Its Optimal-Order Error Estimates [J]. Communications on Applied Mathematics and Computation, 2020, 2(1): 147-162. |
[11] | Prashant K. Jha, Robert Lipton. Finite Element Convergence for State-Based Peridynamic Fracture Models [J]. Communications on Applied Mathematics and Computation, 2020, 2(1): 93-128. |
[12] | Paola Gervasio, Alfio Quarteroni. The INTERNODES Method for Non-conforming Discretizations of PDEs [J]. Communications on Applied Mathematics and Computation, 2019, 1(3): 361-401. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 9
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 246
|
|
|||||||||||||||||||||||||||||||||||||||||||||