1. Airy, G.B.: Tides and waves. In: Rose, H.J., et al. (eds) Encyclopaedia Metropolitana (1817-1845), Mixed Sciences, Vol. 3. London (1845) 2. Baker, J.L., Barker, T., Gray, J.M.N.T.: A two-dimensional depth-averaged μ(I)-rheology for dense granular avalanches. J. Fluid Mech. 787, 367-395 (2016) 3. Barros, R., Gavrilyuk, S.L.: Dispersive nonlinear waves in two-layer flows with free surface part II. Large amplitude solitary waves embedded into the continuous spectrum. Stud. Appl. Math. 119(3), 213-251 (2007) 4. Barros, R., Gavrilyuk, S.L., Teshukov, V.M.: Dispersive nonlinear waves in two-layer flows with free surface. I. Model derivation and general properties. Stud. Appl. Math. 119(3), 191-211 (2007) 5. Barthelemy, E.: Nonlinear shallow water theories for coastal waves. Surv. Geophys. 25(3), 315-337 (2004) 6. Bonneton, P., Chazel, F., Lannes, D., Marche, F., Tissier, M.: A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model. J. Comput. Phys. 230(4), 1479-1498 (2011) 7. Casulli, V.: A semi-implicit finite difference method for non-hydrostatic, free-surface flows. Int. J. Numer. Methods Fluids 30(4), 425-440 (1999) 8. Chanson, H.: Environmental Hydraulics for Open Channel Flows. Butterworth-Heinemann, Oxford (2004) 9. Christen, M., Kowalski, J., Bartelt, P.: RAMMS: numerical simulation of dense snow avalanches in threedimensional terrain. Cold Reg. Sci. Technol. 63(1), 1-14 (2010) 10. Cienfuegos, R., Barthelemy, E., Bonneton, P.: A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: model development and analysis. Int. J. Numer. Methods Fluids 51(11), 1217-1253 (2006) 11. Escalante, C., Fernandez-Nieto, E.D., Morales de Luna, T., Castro, M.J.: An efficient two-layer non-hydrostatic approach for dispersive water waves. J. Sci. Comput. 79(1), 273-320 (2019) 12. Escalante, C., Morales de Luna, T.: A general non-hydrostatic hyperbolic formulation for Boussinesq dispersive shallow flows and its numerical approximation. J. Sci. Comput. 83(3), 62 (2020) 13. Escalante, C., Morales de Luna, T., Castro, M.J.: Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme. Appl. Math. Comput. 338, 631-659 (2018) 14. Favrie, N., Gavrilyuk, S.: A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves. Nonlinearity 30(7), 2718-2736 (2017) 15. Fernandez-Nieto, E.D., Parisot, M., Penel, Y., Sainte-Marie, J.: A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows. Commun. Math. Sci. 16(5), 1169-1202 (2018) 16. French, R.H.: Open-Channel Hydraulics. McGraw-Hill, New York (1985) 17. Garres-Diaz, J., Castro Diaz, M.J., Koellermeier, J., Morales de Luna, T.: Shallow water moment models for bedload transport problems. Commun. Comput. Phys. 30(3), 903-941 (2021) 18. Garres-Diaz, J., Escalante, C., Morales de Luna, T., Castro Diaz, M.J.: A general vertical decomposition of Euler equations: multilayer-moment models. Appl. Numer. Math. 183, 236-262 (2023) 19. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331-407 (1949) 20. Gray, J.M.N.T., Edwards, A.N.: A depth-averaged μ(I)-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503 (2014) 21. Green, A.E., Naghdi, P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78(2), 237-246 (1976) 22. Hagemeier, T., Hartmann, M., Thevenin, D.: Practice of vehicle soiling investigations: a review. Int. J. Multiph. Flow 37(8), 860-875 (2011) 23. Houghton, D.D., Kasahara, A.: Nonlinear shallow fluid flow over an isolated ridge. Commun. Pure Appl. Math. 21(1), 1-23 (1968) 24. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003) 25. Kazolea, M., Delis, A.I., Synolakis, C.E.: Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations. J. Comput. Phys. 271, 281-305 (2014) 26. Kern, M., Bartelt, P., Sovilla, B., Buser, O.: Measured shear rates in large dry and wet snow avalanches. J. Glaciol. 55(190), 327-338 (2009) 27. Koellermeier, J., Rominger, M.: Analysis and numerical simulation of hyperbolic shallow water moment equations. Commun. Comput. Phys. 28(3), 1038-1084 (2020) 28. Kowalski, J., McElwaine, J.N.: Shallow two-component gravity-driven flows with vertical variation. J. Fluid Mech. 714, 434-462 (2013) 29. Kowalski, J., Torrilhon, M.: Moment approximations and model cascades for shallow flow. Commun. Comput. Phys. 25(3), 669-702 (2019) 30. Lannes, D.: The Water Waves Problem: Mathematical Analysis and Asymptotics. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2013) 31. Le Metayer, O., Gavrilyuk, S., Hank, S.: A numerical scheme for the Green-Naghdi model. J. Comput. Phys. 229, 2034-2045 (2010) 32. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002) 33. Lin, P., Li, C.W.: A σ-coordinate three-dimensional numerical model for surface wave propagation. Int. J. Numer. Methods Fluids 38(11), 1045-1068 (2002) 34. Ma, G., Shi, F., Kirby, J.T.: Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 43-44, 22-35 (2012) 35. Madsen, P.A., Murray, R., Sorensen, O.R.: A new form of the Boussinesq equations with improved linear dispersion characteristics. Coast. Eng. 15(4), 371-388 (1991) 36. Madsen, P.A., Bingham, H.B., Liu, H.: A new Boussinesq method for fully nonlinear waves from shallow to deep water. J. Fluid Mech. 462, 1-30 (2002) 37. Mergili, M., Jan-Thomas, F., Krenn, J., Pudasaini, S.P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model Dev. 10(2), 553 (2017) 38. Miles, J., Salmon, R.: Weakly dispersive nonlinear gravity waves. J. Fluid Mech. 157, 519-531 (1985) 39. Miles, J.W.: The Korteweg-de Vries equation: a historical essay. J. Fluid Mech. 106, 131-147 (1981) 40. Nadiga, B.T.: An adaptive discrete-velocity model for the shallow water equations. J. Comput. Phys. 121, 271-280 (1995) 41. Nadiga, B.T., Margolin, L.G., Smolarkiewicz, P.K.: Different approximations of shallow fluid flow over an obstacle. Phys. Fluids 8(8), 2066-2077 (1996) 42. Nagl, G., Hubl, J., Kaitna, R.: Velocity profiles and basal stresses in natural debris flows. Earth Surf. Process. Landf. 45(8), 1764-1776 (2020) 43. Noelle, S., Parisot, M., Tscherpel, T.: A class of boundary conditions for time-discrete GreenNaghdi equations with bathymetry. SIAM J. Numer. Anal. 60, 2681-2712 (2022) 44. Panda, N., Dawson, C., Zhang, Y., Kennedy, A.B., Westerink, J.J., Donahue, A.S.: Discontinuous Galerkin methods for solving Boussinesq-Green-Naghdi equations in resolving non-linear and dispersive surface water waves. J. Comput. Phys. 273, 572-588 (2014) 45. Parisot, M.: Entropy-satisfying scheme for a hierarchy of dispersive reduced models of free surface flow. Int. J. Numer. Methods Fluids 91(10), 509-531 (2019) 46. Peregrine, D.H.: Long waves on a beach. J. Fluid Mech. 27(4), 815-827 (1967) 47. Phillips, N.A.: A coordinate system having some special advantages for numerical forecasting. J. Meteorol. 14, 184-185 (1956) 48. Pudasaini, S.P., Hutter, K.: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, Berlin (2007) 49. Ruyer-Quil, C., Manneville, P.: Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14(1), 170-183 (2002) 50. Ruyer-Quil, C., Manneville, P.: Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357-369 (2000) 51. Sanvitale, N., Bowman, E.T.: Using PIV to measure granular temperature in saturated unsteady polydisperse granular flows. Granul. Matter 18(3), 1-12 (2016) 52. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177-215 (1989) 53. Schaefer, M., Bugnion, L.: Velocity profile variations in granular flows with changing boundary conditions: insights from experiments. Phys. Fluids 25(6), 063303 (2013) 54. Scholz, U., Kowalski, J., Torrilhon, M.: GitHub Repository: Dispersive Shallow Moment Models. In: Source Code www.github.com/ShallowFlowMoments (2023) 55. Stansby, P.K., Zhou, J.G.: Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. Int. J. Numer. Methods Fluids 28(3), 541-563 (1998) 56. Steffler, P.M., Yee-Chung, J.: Depth averaged and moment equations for moderately shallow free surface flow. J. Hydraul. Res. 31(1), 5-17 (1993) 57. Su, C.H., Gardner, C.S.: Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation. J. Math. Phys. 10(3), 536-539 (1969) 58. Torrilhon, M.: Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech. 48, 429-458 (2016) 59. Wei, G., Kirby, J.T., Grilli, S., Subramanya, R.: A fully nonlinear Boussinesq model for surface waves: I. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 71-92 (1995) 60. Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts. Wiley, Hoboken (2011) 61. Zhang, Y., Kennedy, A., Panda, N., Dawson, C., Westerink, J.: Boussinesq-Green-Naghdi rotational water wave theory. Coast. Eng. 73,13-27 (2013) |