1. Abgrall, R., Saurel, R.: Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186(2), 361-396 (2003) 2. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139-165 (1998) 3. Andrianov, N., Warnecke, G.: The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys. 195(2), 434-464 (2004) 4. Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12(6), 861-889 (1986) 5. Balsara, D.S.: Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151(1), 149 (2004) 6. Balsara, D.S., Käppeli, R., Boscheri, W., Dumbser, M.: Curl constraint-preserving reconstruction and the guidance it gives for mimetic scheme design. Commun. Appl. Math. Comput. Sci. 5(1), 235-294 (2023) 7. Barton, P.T.: An interface-capturing Godunov method for the simulation of compressible solid-fluid problems. J. Comput. Phys. 390, 25-50 (2019) 8. Bdzil, J.B., Menikoff, R., Son, S.F., Kapila, A.K., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: a critical examination of modeling issues. Phys. Fluids 11(2), 378-402 (1999) 9. Boscheri, W., Dumbser, M., Ioriatti, M., Peshkov, I., Romenski, E.I.: A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics. J. Comput. Phys. 424, 2 (2021) 10. Busto, S., Chiocchetti, S., Dumbser, M., Gaburro, E., Peshkov, I.: High order ADER schemes for continuum mechanics. Front. Phys. 8, 32 (2020) 11. Busto, S., Dumbser, M., Escalante, C., Gavrilyuk, S., Favrie, N.: On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems. J. Sci. Comput. 87, 25 (2021) 12. Busto, S., Dumbser, M., Río-Martín, L.: An Arbitrary-Lagrangian-Eulerian hybrid finite volume/ finite element method on moving unstructured meshes for the Navier-Stokes equations. Appl. Math. Comput. 437, 25 (2023) 13. Castro, M.J., Gallardo, J.M., Parés, C.: High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallowwater systems. Math. Comput. 75, 1103-1134 (2006) 14. Casulli, V.: A semi-implicit numerical method for the free-surface Navier-Stokes equations. Int. J. Numer. Meth. Fluids 74, 605-622 (2014) 15. Chiocchetti, S., Dumbser, M.: An exactly curl-free staggered semi-implicit finite volume scheme for a first order hyperbolic model of viscous two-phase flows with surface tension. J. Sci. Comput. 94, 2 (2023) 16. Chiocchetti, S., Peshkov, I., Gavrilyuk, S., Dumbser, M.: High order ADER schemes and GLM curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension. J. Comput. Phys. 426, 109898 (2021) 17. Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws— multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230(10), 4028-4050 (2011) 18. De Lorenzo, M., Pelanti, M., Lafon, P.: HLLC-type and path-conservative schemes for a singlevelocity six-equation two-phase flow model: a comparative study. Appl. Math. Comput. 333, 95-117 (2018) 19. Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645-673 (2002) 20. Dhaouadi, F., Dumbser, M.: A first order hyperbolic reformulation of the Navier-Stokes-Korteweg system based on the GPR model and an augmented Lagrangian approach. J. Comput. Phys. 470, 2 (2022) 21. Dhaouadi, F., Dumbser, M.: A structure-preserving finite volume scheme for a hyperbolic reformulation of the Navier-Stokes-Korteweg equations. Mathematics 11, 2 (2023) 22. Diot, S., Clain, S., Loubère, R.: Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids 64, 43-63 (2012) 23. Diot, S., Loubère, R., Clain, S.: The MOOD method in the three-dimensional case: very high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 73, 362-392 (2013) 24. Dumbser, M.: Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations. Comput. Fluids 39(1), 60-76 (2010) 25. Dumbser, M.: A simple two-phase method for the simulation of complex free surface flows. Comput. Methods Appl. Mech. Eng. 200(9), 1204-1219 (2011) 26. Dumbser, M., Balsara, D.S.: High-order unstructured one-step PNPM schemes for the viscous and resistive MHD equations. Comput. Model. Eng. Sci. (CMES) 54(3), 301-333 (2009) 27. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209-8253 (2008) 28. Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227(8), 3971-4001 (2008) 29. Dumbser, M., Fambri, F., Gaburro, E., Reinarz, A.: On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations. J. Comput. Phys. 404, 109088 (2020) 30. Dumbser, M., Hidalgo, A., Castro, M., Parés, C., Toro, E.F.: FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 199, 625-647 (2010) 31. Dumbser, M., Loubère, R.: A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes. J. Comput. Phys. 319, 163-199 (2016) 32. Dumbser, M., Peshkov, I., Romenski, E.I., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824-862 (2016) 33. Dumbser, M., Zanotti, O.: Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations. J. Comput. Phys. 228(18), 6991-7006 (2009) 34. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: a posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47-75 (2014) 35. Favrie, N., Gavrilyuk, S.L.: Diffuse interface model for compressible fluid-compressible elasticplastic solid interaction. J. Comput. Phys. 231(7), 2695-2723 (2012) 36. Favrie, N., Gavrilyuk, S.L., Saurel, R.: Solid-fluid diffuse interface model in cases of extreme deformations. J. Comput. Phys. 228(16), 6037-6077 (2009) 37. Ferrari, D., Dumbser, M.: A mass and momentum-conservative semi-implicit finite volume scheme for complex nonhydrostatic free surface flows. Int. J. Numer. Meth. Fluids 93, 2946-2967 (2021) 38. Ferrari, D., Dumbser, M.: A semi-implicit finite volume scheme for incompressible two-phase flows. Communications on Applied Mathematics and Computation (2023). Submitted 39. Gaburro, E., Castro, M.J., Dumbser, M.: A well balanced diffuse interface method for complex nonhydrostatic free surface flows. Comput. Fluids 175, 180-198 (2018) 40. Gassner, G., Lörcher, F., Munz, C.D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224(8), 1049-1063 (2007) 41. Gavrilyuk, S., Saurel, R.: Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175(1), 326-360 (2002) 42. Godunov, S.K.: An interesting class of quasi-linear systems. Dokl. Akad. Nauk SSSR 139(3), 521- 523 (1961) 43. Godunov, S.K.: Symmetric form of the magnetohydrodynamic equation. Numer. Methods Mech. Contin. Medium 3(1), 26-34 (1972) 44. Godunov, S.K., Romenski, E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic/Plenum Publishers, Berlin (2003) 45. Isaacson, E., Temple, B.: Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52, 1260-1278 (1992) 46. Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13(10), 3002- 3024 (2001) 47. Kemm, F., Gaburro, E., Thein, F., Dumbser, M.: A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer-Nunziato model. Comput. Fluids 204, 104536 (2020) 48. Lukáčová-Medvid’ová, M., Puppo, G., Thomann, A.: An all Mach number finite volume method for isentropic two-phase flow. J. Numer. Math. 31(3), 175-204 (2023) 49. Munz, C.D., Omnes, P., Schneider, R., Sonnendrücker, E., Voss, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161(2), 484-511 (2000) 50. Ndanou, S., Favrie, N., Gavrilyuk, S.L.: Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation. J. Comput. Phys. 295, 523-555 (2015) 51. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300-321 (2006) 52. Powell, K.G.: An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Tech. Rep. ICASE-Report 94-24 (NASA CR-194902), NASA Langley Research Center, Hampton, VA (1994) 53. Powell, K.G.: An Approximate Riemann Solver for Magnetohydrodynamics, pp. 570-583. Springer, Berlin (1997) 54. Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.L.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154(2), 284-309 (1999) 55. Re, B., Abgrall, R.: A pressure-based method for weakly compressible two-phase flows under a BaerNunziato type model with generic equations of state and pressure and velocity disequilibrium. Int. J. Numer. Methods Fluids 94(8), 1183-1232 (2022) 56. Romenski, E.I.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model. 28(10), 115-130 (1998) 57. Romenski, E.I.: Thermodynamics and Hyperbolic Systems of Balance Laws in Continuum Mechanics, pp. 745-761. Springer US (2001) 58. Romenski, E.I., Belozerov, A.A., Peshkov, I.: Conservative formulation for compressible multiphase flows. Q. Appl. Math. 74, 113-136 (2016) 59. Romenski, E.I., Drikakis, D., Toro, E.F.: Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42, 68-95 (2010) 60. Romenski, E.I., Reshetova, G., Peshkov, I.: Two-phase hyperbolic model for porous media saturated with a viscous fluid and its application to wavefields simulation. Appl. Math. Model. 106, 567-600 (2022) 61. Romenski, E.I., Reshetova, G., Peshkov, I., Dumbser, M.: Modeling wavefields in saturated elastic porous media based on thermodynamically compatible system theory for two-phase solid-fluid mixtures. Comput. Fluids 206, 104587 (2020) 62. Romenski, E.I., Resnyansky, A.D., Toro, E.F.: Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures. Q. Appl. Math. 65(2), 259-279 (2007) 63. Romenski, E.I., Toro, E.F.: Compressible two-phase flows: two-pressure models and numerical methods. Comput. Fluid Dyn. J. 13, 2 (2012) 64. Rusanov, V.: The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput. Math. Math. Phys. 1(2), 304-320 (1962) 65. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425-467 (1999) 66. Scannapieco, A.J., Cheng, B.: A multifluid interpenetration mix model. Phys. Lett. A 299(1), 49-64 (2002) 67. Schmidmayer, K., Petitpas, F., Daniel, E., Favrie, N., Gavrilyuk, S.: A model and numerical method for compressible flows with capillary effects. J. Comput. Phys. 334, 468-496 (2017) 68. Tavelli, M., Dumbser, M.: Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity. J. Comput. Phys. 366, 386-414 (2018) 69. Thein, F., Romenski, E.I., Dumbser, M.: Exact and numerical solutions of the Riemann problem for a conservative model of compressible two-phase flows. J. Sci. Comput. 93, 83 (2022) 70. Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional nonlinear hyperbolic systems. J. Comput. Phys. 204(2), 715-736 (2005) 71. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009) 72. Toro, E.F., Millington, R., Nejad, L.: Towards very high order Godunov schemes. In: Godunov Methods, Theory and Applications. Springer (2001) 73. Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection-reaction equations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 458(2018), 271-281 (2002) 74. Toro, E.F., Titarev, V.A.: Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212(1), 150-165 (2006) 75. Van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 20(2), 200-244 (1979) 76. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids 118, 204-224 (2015) |