1. Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174, 614–648 (2001) 2. Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228, 5040–5056 (2009) 3. Balsara, D.S.: Multidimensional HLLE Riemann solver; application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010) 4. Balsara, D.S.: Multidimensional Riemann problem with self-similar internal structure. Part I-Application to hyperbolic conservation laws on structured meshes. J. Comput. Phys. 277, 163–200 (2014) 5. Balsara, D.S., Dumbser, M.: Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. J. Comput. Phys. 299, 687–715 (2015) 6. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016) 7. Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally constraint-preserving DGTD schemes for the Maxwell equations using multidimensional Riemann solvers. J. Comput. Phys. 376, 1108–1137 (2019) 8. Balsara, D.S., Kumar, R., Chandrashekar, P.: Globally divergence-free DG schemes for ideal compressible MHD at all orders. Commun. Appl. Math. Comput. Sci. 16(1), 59–98 (2021) 9. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000) 10. Balsara, D.S., Spicer, D.S.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999) 11. Balsara, D.S., Taflove, A., Garain, S., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution -Part II, higher-order FVTD schemes. J. Comput. Phys. 354, 613–645 (2018) 12. Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989) 13. Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984) 14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004). (Chapter 5) 15. Brackbill, J.: Fluid modelling of magnetized plasmas. Space Sci. Rev. 42, 153–167 (1985) 16. Brackbill, J.U., Barnes, D.C.: The effect of nonzero ▽· B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426–430 (1980) 17. Brecht, S.H., Lyon, J.G., Fedder, J.A., Hain, K.: A simulation study of east-west IMF effects on the magnetosphere. Geophys. Res. Lett. 8, 397–400 (1981) 18. Colella, P., Woodward, P.: The piecewise parabolic method (PPM) for gas dynamical simulations. J. Comput. Phys. 54, 174–201 (1984) 19. Cravero, I., Puppo, G., Semplice, M., Visconti, G.: CWENO: uniformly accurate reconstructions for balance laws. Math. Comput. 87, 1689–1719 (2018) 20. Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67(3), 1219–1246 (2016) 21. Dai, W., Woodward, P.R.: On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows. Astrophys. J. 494, 317–335 (1998) 22. DeVore, C.R.: Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics. J. Comput. Phys. 92, 142–160 (1991) 23. Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: ADER-WENO finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248, 257–286 (2013) 24. Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J. 332, 659–677 (1989) 25. Hazra, A., Chandrashekar, P., Balsara, D.S.: Globally constraint-preserving FR/DG scheme for Maxwell’s equations at all orders. J. Comput. Phys. 394, 298–328 (2019) 26. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987) 27. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) 28. Karush, W.: Minima of Functions of Several Variables with Inequalities as Side Constraints (M.Sc. thesis). Dept. of Mathematics, Univ. of Chicago, Chicago, Illinois (1939) 29. Kuhn, H.W., Tucker, A.W. Nonlinear programming. In: Proceedings of 2nd Berkeley Symposium, Berkeley: University of California Press, pp. 481–492 (1951) 30. Li, W., Ren, Y.: High-order k-exact WENO finite volume schemes for solving gas dynamic Euler equations on unstructured grids. Int. J. Numer. Methods. Fluid 70, 742–763 (2012) 31. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) 32. Liu, Y., Sarris, C.D.: Fast time-domain simulation of optical waveguide structures with a multilevel dynamically adaptive mesh refinement FDTD approach. J. Lightwave Technol. 24(8), 3235–3247 (2006) 33. Liu, Y., Sarris, C.D.: Efficient modeling of microwave integrated-circuit geometries via a dynamically adaptive mesh refinement–FDTD technique. IEEE Trans. Microw. Theory Tech. 54(2), 689–703 (2006) 34. McCorquodale, P., Colella, P.: A high-order finite-volume method for conservation laws on locally refined grids. Commun. Appl. Math. Comput. Sci. 6(1), 1–25 (2011) 35. Ryu, D., Miniati, F., Jones, T.W., Frank, A.: A divergence-free upwind code for multidimensional magnetohydrodynamic flows. Astrophys. J. 509, 244–255 (1998) 36. Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988) 37. Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989) 38. Taflove, A., Brodwin, M.E.: Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975) 39. Taflove, A., Hagness, S.: Computational Electrodynamics. third edition, Artech House (2005) 40. Van Leer, B.: Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979) 41. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell equation in an isotropic media. IEEE Trans. Antenna Propagation 14, 302–307 (1966) 42. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016) 43. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018) |