[1] Autonne, L.: Sur les groupes lineaires, reels et orthogonaux. Bull. Sot. Math. France 30, 121–134 (1902) [2] Cordero, A., Torregrosa, J.R.: A sixth-order iterative method for approximating the polar decomposition of an arbitrary matrix. J. Comput. Appl. Math. 318, 591–598 (2017) [3] Esmaeili, H.: A class of iterative methods for computing polar decomposition. Int. J. Comput. Math. 88, 207–220 (2011) [4] Gander, W.: Algorithms for polar decomposition. SIAM J. Sci. Stat. Comput. 11, 1102–1115 (1990) [5] Golub, G., Van Loan, C.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013) [6] Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia (2008) [7] Higham, N.J., Mackey, D.S., Mackey, N., Tisseur, F.: Computing the polar decomposition and the matrix sign decomposition in matrix groups. SIAM J. Matrix Anal. Appl. 25, 1178–1192 (2004) [8] Khaksar, F., Soleymani, F.: On a fourth-order matrix method for computing polar decomposition. Comput. Appl. Math. 34, 389–399 (2015) [9] Kiyoumarsi, F.: Some new high-order computational methods for polar decomposition of complex matrices. Iran. J. Sci. Technol. Trans. A Sci. 42(4), 2293–2299 (2018) [10] Kovarik, Z.: Some iterative methods for improving orthogonality. SIAM J. Numer. Anal. 7, 386–389 (1970) [11] Petcu, D., Popa, C.: A new version of Kovarik’s approximate orthogonalization algorithm without matrix inversion. Int. J. Comput. Math. 82, 1235–1246 (2005) [12] Soleymani, F., Haghani, K.F., Shateyi, S.: Several numerical methods for computing unitary polar factor of a matrix. Adv. Difference Equ. 2016(4), 1–11 (2016). https://doi.org/10.1186/s13662-015-0732-z [13] Soleymani, F., Stanimirovic, P.S., Stojanovic, I.: A novel iterative method for polar decomposition and matrix sign function. Discrete Dyn. Nat. Soc. 2015, 1–11 (2015) |