[1] Arridge, S., Beard, P., Betcke, M., Cox, B., Huynh, N., Lucka, F., Ogunlade, O., Zhang, E.: Accelerated high-resolution photoacoustic tomography via compressed sensing. Phys. Med. Biol. 61(24), 8908 (2016) [2] Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438-457 (2010) [3] Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137(1/2), 91-129 (2013) [4] Bai, Z.-Z.: Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems. Appl. Math. Comput. 109(2/3) 273-285 (2000) [5] Bai, Z.-Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl. Math. 283, 71-78 (2015) [6] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. Society for Industrial and Applied Mathematics, Philadelphia (2021) [7] Bai, Z.-Z., Wang, L.: On convergence rates of Kaczmarz-type methods with different selection rules of working rows. Appl. Numer. Math. 186, 289-319 (2023) [8] Bai, Z.-Z.: Wang, L., Muratova, G.V.: On relaxed greedy randomized augmented Kaczmarz methods for solving large sparse inconsistent linear systems. East Asian J. Appl. Math. 12(2), 323-332 (2022) [9] Bai, Z.-Z., Wu, W.-T.: On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 40(1), 592-606 (2018) [10] Bai, Z.-Z., Wu, W.-T.: On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Appl. Math. Lett. 83, 21-26 (2018) [11] Bai, Z.-Z., Wu, W.-T.: On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer. Linear Algebra 26(4), 2237 (2019) [12] Bai, Z.-Z., Wu, W.-T.: On greedy randomized augmented Kaczmarz method for solving large sparse inconsistent linear systems. SIAM J. Sci. Comput. 43(6), 3892-3911 (2021) [13] Bai, Z.-Z., Wu, W.-T.: Randomized Kaczmarz iteration methods: algorithmic extensions and convergence theory. Jpn. J. Ind. Appl. Math. 40(3), 1421-1443 (2023) [14] Barry, J.R., Lee, E.A., Messerschmitt, D.G.: Digital Communication. Springer, Berlin (2012) [15] Bell, A.G.: On the production and reproduction of sound by light. Am. J. Sci. 3(118), 305-324 (1880) [16] Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optimiz. 17(4), 1205-1223 (2007) [17] Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1/2), 459-494 (2014) [18] Dean-Ben, X.L., Ntziachristos, V., Razansky, D.: Acceleration of optoacoustic model-based reconstruction using angular image discretization. IEEE Trans. Med. Imaging 31(5), 1154-1162 (2012) [19] Ding, L., Dean-Ben, X.L., Razansky, D.: Real-time model-based inversion in cross-sectional optoacoustic tomography. IEEE Trans. Med. Imaging 35(8), 1883-1891 (2016) [20] Geng, T., Sun, G., Xu, Y., He, J.F.: Truncated nuclear norm minimization based group sparse representation for image restoration. SIAM J. Imaging Sci. 11(3), 1878-1897 (2018) [21] Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (2013) [22] Han, Y., Ding, L., Ben, X.L.D., Razansky, D., Prakash, J., Ntziachristos, V.: Three-dimensional optoacoustic reconstruction using fast sparse representation. Opt. Lett. 42(5), 979-982 (2017) [23] Huang, Y.M., Yan, H.Y.: Weighted nuclear norm minimization-based regularization method for image restoration. Commun. Appl. Math. Comput. 3, 371-389 (2021) [24] Huang, Y.M., Yan, H.Y., Wen, Y.W., Yang, X.: Rank minimization with applications to image noise removal. Inform. Sci. 429, 147-163 (2018) [25] Jansen, K., van-Soest, G., van-der-Steen, A.F.W.: Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification. Ultrasound Med. Biol. 40(6), 1037-1048 (2014) [26] John, M.J., Barhumi, I.: Fast and efficient PAT image reconstruction algorithms: a comparative performance analysis. Signal Process. 201, 108691 (2022) [27] Kruger, R.A., Liu, P., Fang, Y.R.: Photoacoustic ultrasound (PAUS)—reconstruction tomography. Med. Phys. 2(10), 1605-1609 (1995) [28] Kunyansky, L.A.: Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl. 23(1), 373-383 (2007) [29] Laufer, J.G., Zhang, E.Z., Treeby, B.E., Cox, B.T., Beard, P.C., Johnson, P., Pedley, B.: In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17(5), 056016 (2012) [30] Li, X., Qi, L., Zhang, S., Huang, S.X., Chen, W.F.: Model-based optoacoustic tomography image reconstruction with non-local and sparsity regularizations. IEEE Access 7, 102136-102148 (2019) [31] Liu, F., Gong, X., Wang, L.V., Guan, J., Meng, J.: Dictionary learning sparse-sampling reconstruction method for in-vivo 3D photoacoustic computed tomography. Biomed. Opt. Express 10(4), 1660-1677 (2019) [32] Liu, X.X., Lu, J., Shen, L.X., Xu, C., Xu, Y.S.: Multiplicative noise removal: nonlocal low-rank model and its proximal alternating reweighted minimization algorithm. SIAM J. Imaging Sci. 13(3), 1595-1629 (2020) [33] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I. Basic Theory. Springer, Berlin (2006) [34] Shaw, C.B., Prakash, J., Pramanik, M.: Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography. J. Biomed. Opt. 18(8), 080501-080501 (2013) [35] Sivasubramanian, K., Periyasamy, V., Pramanik, M.: Non-invasive sentinel lymph node mapping and needle guidance using clinical handheld photoacoustic imaging system in small animal. J. Biophotonics 11(1), 201700061 (2018) [36] Tang, J., Coleman, J.E., Dai, X., Jiang, H.: Wearable 3-D photoacoustic tomography for functional brain imaging in behaving rats. Sci. Rep. 6(1), 25470 (2016) [37] Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600-612 (2004) [38] Wang, Z.X., Wang, H.Q., Ren, S.L.: Research on ADMM reconstruction algorithm of photoacoustic tomography with limited sampling data. IEEE Access 9, 113631-113641 (2021) [39] Xia, J., Chatni, M.R., Maslov, K., Guo, Z.J., Wang, K., Anastasio, M., Wang, L.V.: Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J. Biomed. Opt. 17(5), 050506 (2012) [40] Xie, Y., Qu, Y., Tao, D., Wu, W., Yuan, Q., Zhang, W.: Hyperspectral image restoration via iteratively regularized weighted Schatten \begin{document}$ p $\end{document}-norm minimization. IEEE Trans. Geosci Remote Sens. 54(8), 4642-4659 (2016) [41] Xu, M.H., Wang, L.V.: Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging 21(7), 814-822 (2002) [42] Xu, M.H., Wang, L.V.: Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71(1), 016706 (2005) [43] Xu, M.H., Xu, Y., Wang, L.V.: Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries. IEEE Trans. Biomed. Eng. 50(9), 1086-1099 (2003) [44] Xu, Y., Feng, D., Wang, L.V.: Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry. IEEE Trans. Med. Imaging 21(7), 823-828 (2002) [45] Xu, Y., Xu, M.H., Wang, L.V.: Exact frequency-domain reconstruction for thermoacoustic tomography. II. Cylindrical geometry. IEEE Trans. Med. Imaging 21(7), 829-833 (2002) [46] Yamaga, I., Kawaguchi-Sakita, N., Asao, Y.: Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: a potential biomarker for breast cancer. Photoacoustics 11, 6-13 (2018) [47] Yan, H.Y., Huang, Y.M., Yu, Y.C.: A matrix rank minimization-based regularization method for image restoration. Digit. Signal Process. 130, 103694 (2022) [48] Yan, H.Y., Zheng, Z.: Image cartoon-texture decomposition by a generalized non-convex low-rank minimization method. J Franklin Inst. 361(2), 796-815 (2024) [49] Yu, Y., Peng, J., Yue, S.: A new nonconvex approach to low-rank matrix completion with application to image inpainting. Multidimens. Syst. Signal Process. 30, 145-174 (2019) [50] Zhang, Y., Wang, Y.Y., Zhang, C.: Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction. Ultrasonics 52(8), 1046-1055 (2012) |