1. Bai, Z.-Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. Journal of Computational and Applied Mathematics 283, 71–78 (2015) 2. Bai, Z.-Z., Chi, X.-B., Wang, Z.-Q.: A Lanczos-based projection method for symmetric indefinite linear systems, In: Proceedings of the Seventh China-Japan Seminar on Numerical Mathematics, pp. 1–8. Science Press, Beijing. (2006) 3. Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddlepoint problems. IMA Journal of Numerical Analysis 27(1), 1–23 (2007) 4. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM Journal on Matrix Analysis and Applications 24(3), 603–626 (2003) 5. Bai, Z.-Z., Li, G.-Q.: Restrictively preconditioned conjugate gradient methods for systems of linear equations. IMA Journal of Numerical Analysis 23(4), 561–580 (2003) 6. Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) 7. Bai, Z.-Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numerische Mathematik 102, 1–38 (2005) 8. Bai, Z.-Z., Wang, L., Muratova, G.V.: On relaxed greedy randomized augmented Kaczmarz methods for solving large sparse inconsistent linear systems. East Asian Journal on Applied Mathematics 12(2), 323–332 (2022) 9. Bai, Z.-Z., Wu, W.-T.: On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM Journal on Scientific Computing 40(1), A592–A606 (2018) 10. Bai, Z.-Z., Wu, W.-T.: On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Applied Mathematics Letters 83, 21–26 (2018) 11. Bai, Z.-Z., Wu, W.-T.: On greedy randomized coordinate descent methods for solving large linear leastsquares problems. Numerical Linear Algebra with Applications 26(4), e2237 (2019) 12. Bai, Z.-Z., Wu, W.-T.: On greedy randomized augmented Kaczmarz method for solving large sparse inconsistent linear systems. SIAM Journal on Scientific Computing 43(6), A3892–A3911 (2021) 13. Bai, Z.-Z., Wu, W.-T.: Randomized Kaczmarz iteration methods: algorithmic extensions and convergence theory. Japan Journal of Industrial and Applied Mathematics 40(3), 1421–1443 (2023) 14. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005) 15. Choi, S.-C., Paige, C.C., Saunders, M.A.: MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems. SIAM Journal on Scientific Computing 33(4), 1810–1836 (2011) 16. Craig, J.E.: The N-step iteration procedures. Journal of Mathematics and Physics 34(1), 64–73 (1955) 17. Ikramov, Kh.: Matrix pencils: theory, applications, numerical methods. Journal of Soviet Mathematics 64, 783–853 (1993) 18. Korncoff, A.R., Fenves, S.J.: Symbolic generation of finite element stiffness matrices. Computers & Structures 10(1/2), 119–124 (1979). https://doi.org/10.1016/0045-7949(79)90078-6 19. Krukier, L.A., Martynova, T.S., Bai, Z.-Z.: Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems. Journal of Computational and Applied Mathematics 232(1), 3–16 (2009) 20. Kurbatova, N.V., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite element approach for composite magneto-piezoelectric materials modeling in ACELAN-COMPOS package. Analysis and Modelling of Advanced Structures and Smart Systems 181, 69–88 (2018) 21. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards 45, 255–281 (1950) 22. Lu, Z.-R., Lin, G., Wang, L.: Output-only modal parameter identification of structures by vision modal analysis. Journal of Sound and Vibration 497, 115949 (2021) 23. Martynova, T., Muratova, G., Oganesyan, P., Shtein, O.: The numerical solution of large-scale generalized eigenvalue problems arising from finite-element modeling of electroelastic materials. Symmetry 15, 171 (2023) 24. Meerbergen, K.: The Lanczos method with semi-definite inner product. BIT Numerical Mathematics 41, 1069–1078 (2001) 25. Nour-Omid, B., Parlett, B.N., Ericsson, T., Jensen, P.S.: How to implement the spectral transformation. Mathematics of Computation 48, 663–673 (1987) 26. Orban, D., Arioli, M.: Iterative Methods for Symmetric Quasi-Definite Linear Systems. SIAM, Philadelphia (2017) 27. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis 12, 617–629 (1975) 28. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998) 29. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd ed. SIAM, Philadelphia (2011) 30. Saunders, M.A.: Solution of sparse rectangular systems using LSQR and CRAIG. BIT Numerical Mathematics 35, 588–604 (1995) 31. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic Press, London (2001) 32. Vanderbei, R.J.: Symmetric quasidefinite matrices. SIAM Journal on Optimization 5(1), 100–113 (1995) 33. Yang, U.M.: Parallel Algebraic Multigrid Methods-High Performance Preconditioners. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 6–12 (2006) 34. Zahid, F.B., Chao, O., Khoo, S.: A review of operational modal analysis techniques for in-service modal identification. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42, 398 (2020) 35. Zhou, Y., Han, L.: Modal analysis of piezoelectric materials based on scanning laser vibration measurement. In: 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Nanjing, China, pp. 829–832 (2022) https://doi.org/10.1109/SPAWDA56268.2022.10045877 |