1. Bai, Z.-Z.: On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations. J. Comput. Math. 29(2), 185–198 (2011) 2. Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) 3. Baur, U., Benner, P.: Cross-Gramian based model reduction for data-sparse systems. Electron. Trans. Numer. Anal. 31, 256–270 (2008) 4. Beik, F.P.A., Ahmadi-Asl, S.: Residual norm steepest descent based iterative algorithms for Sylvester tensor equations. J. Math. Model. 2(2), 115–131 (2015) 5. Beik, F.P.A., Movahed, F.S., Ahmadi-Asl, S.: On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations. Numer. Linear Algebra. Appl. 23(3), 444–466 (2016) 6. Boglaev, I.: On a domain decomposition algorithm for a singularly perturbed reaction-diffusion problem. J. Comput. Appl. Math. 98(2), 213–232 (1998) 7. Boglaev, I: An implicit-explicit domain decomposition algorithm for a singularly perturbed parabolic problem. Comput. Math. Appl. 38(5/6), 41–53 (1999) 8. Boglaev, I: Domain decomposition in boundary layer for singularly perturbed problem. Appl. Numer. Math. 34(2), 145–166 (2000) 9. Cai, X.-C., Casarin, M.A., Elliott, F.W.: Overlapping Schwarz algorithms for solving Helmholtz’s equation. In: Domain Decomposition Methods, vol. 10, pp. 391–399 (1998) 10. Chen, Y.-H., Li, C.-L.: A tensor multigrid method for solving Sylvester tensor equations. IEEE Trans. Auto. Sci. Eng. (2023). https://doi.org/10.1109/TASE.2023.3296110 11. Chen, Z., Lu, L.-Z.: A projection method and Kronecker product preconditioner for solving Sylvester tensor equations. Sci. China Math. 55(6), 1281–1292 (2012) 12. Chu, D., Tan, R.C.E.: Numerically reliable computing for the row by row decoupling problem with stability. SIAM J. Matrix Anal. Appl. 23(4), 1143–1170 (2002) 13. Datta, B.N., Lin, W.-W., Wang, J.-N.: Robust partial pole assignment for vibrating systems with aerodynamic effects. IEEE Trans. Autom. Control. 51(21), 1979–1984 (2006) 14. Dawson, C.N., Du, Q., Dupont, T.F.: A finite difference domain decomposition algorithm for numerical solution of the heat equation. Math. Comput. 57(195), 63–63 (1991) 15. Dawson, C.N., Dupont, T.F.: Explicit/implicit, conservative domain decomposition procedures for parabolic problems based on block-centered finite differences. SIAM J. Numer. Anal. 31(4), 1045–1061 (1994) 16. Gander, M.J., Halpern, L., Nataf, F.: Optimized Schwarz methods. In: Proceedings of the 12th International Conference on Domain Decomposition Methods, Japan, pp. 15–27 (2001) 17. Grasedyck, L.: Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 72(3/4), 247–265 (2004) 18. Heyouni, M., Saberi-Movahed, F., Tajaddini, A.: A tensor format for the generalized Hessenberg method for solving Sylvester tensor equations. J. Comput. Appl. Math. 377, 112878 (2020) 19. Kang, L.-S.: Domain Decomposition and Parallel Algorithm. Wuhan University Press, Wuhan (1987) 20. Kang, L.-S., Quan, H.-Y.: Splitting Method for Numerical Solution of High Dimensional PDE. Sci. Technology Press, Shanghai (1990) 21. Karimi, S., Dehghan, M.: Global least squares method based on tensor form to solve linear systems in Kronecker format. Trans. Inst. Meas. Control 40(7), 2378–2386 (2018) 22. Li, J.-H., Ding, F., Yang, G.-W.: Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems. Math. Comput. Model. 55, 442–450 (2012) 23. Lions, P.L.: On Schwarz Alternating Method I: First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 1–42. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988) 24. Lions, P.L.: On Schwarz Alternating Method II: Stochastic Interpretation and Order Properties, pp. 47–70. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1989) 25. Lions, P.L.: On the Schwarz Alternating Method III: a Variant for Nonoverlapping Subdomains, pp. 202–223. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1990) 26. Lu, T., Shih, T.M., Liem, C.B.: Two synchronous parallel algorithms for partial differential equations. J. Comput. Math. 9(1), 74–85 (1991) 27. Lyu, G.-X., Ma, F.-M.: Finite difference domain decomposition algorithm for two-dimensional heat equation. J. Numer. Methods Comput. Appl. 27(2), 96–105 (2006) 28. Lyu, T., Shi, J.-M., Li, Z.-B.: Domain Decomposition Methods: New Numerical Techniques for Solving PDE. Science Press, Beijing (1997) 29. McInnes, L.C., Susan-Resigna, R., Keyes, D.E.: Additive Schwarz methods with nonreflecting boundary conditions for the parallel computation of Helmholtz problems. In: Domain Decomposition Methods (Boulder, CO, 1997), vol. 10, pp. 325–333 (1998) 30. Miller, K.: Numerical analogs to the Schwarz alternating procedure. Numer. Math. 7(2), 91–103 (1965) 31. Najafi-Kalyani, M., Beik, F.P.A., Jbilou, K.: On global iterative schemes based on Hessenberg process for (ill-posed) Sylvester tensor equations. J. Comput. Appl. Math. 373, 112216 (2020) 32. Nataf, F.: Absorbing boundary conditions in block Gauss-Seidel methods for the convection problems. Math. Models Methods Appl. Sci. 6(4), 481–502 (1996) 33. Nataf, F., Rogier, F.: Factorization of the convection-diffusion operator and the Schwarz algorithm. Math. Models Methods Appl. Sci. 5(1), 67–93 (1995) 34. Schwarz, H.A.: Gesammelte Mathematiche Abhandlungen, vol. 2, pp. 133–143. Springer, Berlin (1890) (First published in Viertel jahrsschrift der Naturforschenden Gesellschaft 15(2), 272–286 (1870)) 35. Tang, W.-P.: Schwarz Splitting and Template Operators. Stanford University, Stanford (1987) 36. Wang, W., Ding, F., Dai, J.-Y.: Maximum likelihood least squares identification for systems with autoregressive moving average noise. Appl. Math. Model. 36(5), 1842–1853 (2012) 37. Zhang, X.-F., Wang, Q.-W.: Developing iterative algorithms to solve Sylvester tensor equations. Appl. Math. Comput. 409, 126403 (2021) |