1. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Non-linear extended thermodynamics of real gases with 6 fields. Int. J. Non-Linear Mech. 72, 6-15 (2015) 2. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Galilean invariance and entropy principle for a system of balance laws of mixture type. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 28, 66-75 (2017) 3. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376(44), 2799-2803 (2012) 4. Artale, V., Conforto, F., Martalò, G., Ricciardello, A.: Shock structure and multiple sub-shocks in grad 10-moment binary mixtures of monoatomic gases. Ric. Mat. 68(2), 485-502 (2019) 5. Bethe, H.A., Teller, E.: Deviations from Thermal Equilibrium in Shock Waves. Reprinted by Engineering Research Institute. University of Michigan, Michigan (1941) 6. Bianchini, S., Hanouzet, B., Natalini, R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math. 60, 1559-1622 (2007) 7. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994) 8. Bisi, M., Martalò, G., Spiga, G.: Shock wave structure of multi-temperature Euler equations from kinetic theory for a binary mixture. Acta Appl. Math. 132(1), 95-105 (2014) 9. Boillat, G., Ruggeri, T.: Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137(4), 305-320 (1997) 10. Boillat, G., Ruggeri, T.: On the shock structure problem for hyperbolic system of balance laws and convex entropy. Contin. Mech. Thermodyn. 10(5), 285-292 (1998) 11. Bose, T.: High Temperature Gas Dynamics. Springer, Berlin (2004) 12. Brini, F., Ruggeri, T.: On the Riemann problem with structure in extended thermodynamics. Suppl. Rend. Circ. Mat. Palermo II(78), 31-43 (2006) 13. Brini, F., Ruggeri, T.: The Riemann problem for a binary non-reacting mixture of Euler fluids. In: Monaco, R., Pennisi, S., Rionero, S., Ruggeri, T. (eds.) Proceedings XII Int. Conference on Waves and Stability in Continuous Media, pp. 102-108. World Scientific, Singapore (2004) 14. Brini, F., Ruggeri, T.: On the Riemann problem in extended thermodynamics. In: Proceedings of the 10th International Conference on Hyperbolic Problems (HYP2004), pp. 319-326. Yokohama Publisher Inc., Yokohama (2006) 15. Conforto, F., Mentrelli, A., Ruggeri, T.: Shock structure and multiple sub-shocks in binary mixtures of Eulerian fluids. Ric. Mat. 66(1), 221-231 (2017) 16. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1962) 17. Djordjić, V., Pavić-Čolić, M., Torrilhon, M.: Consistent, explicit, and accessible Boltzmann collision operator for polyatomic gases. Phys. Rev. E 104, 025309 (2021) 18. Gamba, I.M., Pavić-Čolić, M.: On the Cauchy problem for Boltzmann equation modeling a polyatomic gas. J. Math. Phys. 64, 013303 (2023) 19. Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Rat. Mech. Anal. 2, 617 (1953) 20. Gouin, H., Ruggeri, T.: Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids. Phys. Rev. E 78, 016303 (2008) 21. Haynes, W.M.: CRC Handbook of Chemistry and Physics, 95th edn. CRC Press, Boca Raton, FL (2014) 22. Kosuge, S., Aoki, K.: Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev. Fluids 3, 023401 (2018) 23. Kosuge, S., Aoki, K., Goto, T.: Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation. AIP Conf. Proc. 1786(1), 180004 (2016) 24. Liotta, S.F., Romano, V., Russo, G.: Central schemes for balance laws of relaxation type. SIAM J. Numer. Anal. 38(4), 1337-1356 (2001) 25. Liu, T.-P.: Linear and nonlinear large-time behavior of solutions of general systems of hyperbolic conservation laws. Commun. Pure Appl. Math. 30(6), 767-796 (1977) 26. Liu, T.-P.: Large-time behavior of solutions of initial and initial-boundary value problems of a general system of hyperbolic conservation laws. Commun. Math. Phys. 55(2), 163-177 (1977) 27. Liu, T.-P.: Nonlinear hyperbolic-dissipative partial differential equations. In: Ruggeri, T. (ed.) Recent Mathematical Methods in Nonlinear Wave Propagation Lecture Notes in Mathematics, pp. 103-136. Springer, Berlin, Heidelberg (1996) 28. Madjarević, D., Pavić-Čolić, M., Simić, S.: Shock structure and relaxation in the multi-component mixture of Euler fluids. Symmetry 13(6), 955 (2021) 29. Mentrelli, A., Ruggeri, T.: Asymptotic behavior of Riemann and Riemann with structure problems for a 2×2 hyperbolic dissipative system. Suppl. Rend. Circ. Mat. Palermo II(78), 201-225 (2006) 30. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998) 31. Pavić-Čolić, M.: Multi-velocity and multi-temperature model of the mixture of polyatomic gases issuing from kinetic theory. Phys. Lett. A 383(24), 2829-2835 (2019) 32. Pirner, M.: A review on BGK models for gas mixtures of mono and polyatomic molecules. Fluids 6, 393 (2021) 33. Ruggeri, T.: Breakdown of shock-wave-structure solutions. Phys. Rev. E 47, 4135-4140 (1993) 34. Ruggeri, T., Serre, D.: Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Quart. Appl. Math. 62, 163-179 (2004) 35. Ruggeri, T., Simić, S.: On the hyperbolic system of a mixture of Eulerian fluids: a comparison between single- and multi-temperature models. Math. Methods Appl. Sci. 30(7), 827-849 (2007) 36. Ruggeri, T., Simić, S.: Mixture of gases with multi-temperature: identification of a macroscopic average temperature. In: Memorie dell’Accademia delle Scienze, Lettere ed Arti di Napoli, Proceedings Mathematical Physics Models and Engineering Sciences, pp. 455-465 (2008). http:// www. socie tanaz ional escie nzele ttere arti. it/ pdf/ Memor ie% 20SFM% 20-% 20Mat hemat ical% 20Phy sics% 20Mod el% 20(2008). pdf 37. Ruggeri, T., Simić, S.: Average temperature and Maxwellian iteration in multitemperature mixtures of fluids. Phys. Rev. E 80, 026317 (2009) 38. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, Cham (2015) 39. Ruggeri, T., Sugiyama, M.: Classical and Relativistic Rational Extended Thermodynamics of Gases. Springer, Cham (2021) 40. Ruggeri, T., Taniguchi, S.: Shock waves in hyperbolic systems of nonequilibrium thermodynamics. In: Berezovski, A., Soomere, T. (eds.) Applied Wave Mathematics II. Mathematics of Planet Earth, pp. 167-186. Springer, Cham (2019) 41. Ruggeri, T., Taniguchi, S.: Sub-shock formation in shock structure of a binary mixture of polyatomic gases. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 32, 167-179 (2021) 42. Ruggeri, T., Taniguchi, S.: A complete classification of sub-shocks in the shock structure of a binary mixture of Eulerian gases with different degrees of freedom. Phys. Fluids 34(6), 066116 (2022) 43. Ruggeri, T., Taniguchi, S.: Shock structure and sub-shocks formation in a mixture of polyatomic gases with large bulk viscosity. Ric. Mat. (2023). https:// doi. org/ 10. 1007/ s11587- 023- 00788-8 44. Taniguchi, S., Ruggeri, T.: On the sub-shock formation in extended thermodynamics. Int. J. Non-Linear Mech. 99, 69-78 (2018) 45. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. Phys. Rev. E 89, 013025 (2014) 46. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids 26(1), 016103 (2014) 47. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure. Int. J. NonLinear Mech. 79, 66-75 (2016) 48. Taniguchi, S., Ruggeri, T.: A 2×2 simple model in which the sub-shock exists when the shock velocity is slower than the maximum characteristic velocity. Ric. Mat. 68(1), 119-129 (2019) 49. Vincenti, W.G., Kruger, C.H., Jr.: Introduction to Physical Gas Dynamics. Wiley, New York, London, Sydney (1965) 50. Weiss, W.: Continuous shock structure in extended thermodynamics. Phys. Rev. E 52, 5760-5763 (1995) 51. Yong, W.-A.: Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal. 172, 247-266 (2004) 52. Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Publications, Mineola, New York (2002) |