Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (4): 2093-2118.doi: 10.1007/s42967-023-00306-5
• ORIGINAL PAPERS • Previous Articles Next Articles
Michael Herty, Niklas Kolbe, Siegfried Müller
Received:
2023-04-26
Revised:
2023-07-29
Accepted:
2023-08-15
Published:
2024-12-20
Contact:
Niklas Kolbe,E-mail:kolbe@igpm.rwth-aachen.de;Michael Herty,E-mail:herty@igpm.rwth-aachen.de;Siegfried Müller,E-mail:mueller@igpm.rwth-aachen.de
E-mail:kolbe@igpm.rwth-aachen.de;herty@igpm.rwth-aachen.de;mueller@igpm.rwth-aachen.de
Michael Herty, Niklas Kolbe, Siegfried Müller. A Central Scheme for Two Coupled Hyperbolic Systems[J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2093-2118.
1. Adimurthi, M.S., Veerappa Gowda, G.D.: Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2(4), 783-837 (2005). https:// doi. org/ 10. 1142/ S0219 89160 5000622 2. Ambroso, A., Chalons, C., Coquel, F., Godlewski, E., Lagoutière, F., Raviart, P.-A., Seguin, N.: Coupling of general Lagrangian systems. Math. Comput. 77(262), 909-941 (2008). https:// doi. org/ 10. 1090/ S0025- 5718- 07- 02064-9 3. Andreianov, B., Karlsen, K.H., Risebro, N.H.: A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201(1), 27-86 (2011). https:// doi. org/ 10. 1007/ s00205- 010- 0389-4 4. Banda, M.K., Häck, A.-S., Herty, M.: Numerical discretization of coupling conditions by highorder schemes. J. Sci. Comput. 69(1), 122-145 (2016). https:// doi. org/ 10. 1007/ s10915- 016- 0185-x 5. Banda, M.K., Herty, M., Klar, A.: Gas flow in pipeline networks. Netw. Heterog. Media 1(1), 41-56 (2006). https:// doi. org/ 10. 3934/ nhm. 2006.1. 41 6. Banda, M.K., Herty, M., Klar, A.: Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterog. Media 1(2), 295-314 (2006). https:// doi. org/ 10. 3934/ nhm. 2006.1. 295 7. Banda, M.K., Herty, M., Ngnotchouye, J.M.T.: On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections. J. Comput. Appl. Math. 276, 81-97 (2015). https:// doi. org/ 10. 1016/j. cam. 2014. 08. 021 8. Borsche, R.: Numerical schemes for networks of hyperbolic conservation laws. Appl. Numer. Math. 108, 157-170 (2016). https:// doi. org/ 10. 1016/j. apnum. 2016. 01. 006 9. Borsche, R., Kall, J.: ADER schemes and high order coupling on networks of hyperbolic conservation laws. J. Comput. Phys. 273, 658-670 (2014). https:// doi. org/ 10. 1016/j. jcp. 2014. 05. 042 10. Borsche, R., Klar, A.: Kinetic layers and coupling conditions for scalar equations on networks. Nonlinearity 31(7), 3512-3541 (2018). https:// doi. org/ 10. 1088/ 1361- 6544/ aabc91 11. Bressan, A.: Hyperbolic Systems of Conservation Laws. Oxford Lecture Series in Mathematics and Its Applications, vol. 20, pp. 250. Oxford University Press, Oxford (2000). (The one-dimensional Cauchy problem) 12. Bressan, A., Čanić, S., Garavello, M., Herty, M., Piccoli, B.: Flows on networks: recent results and perspectives. EMS Surv. Math. Sci. 1(1), 47-111 (2014). https:// doi. org/ 10. 4171/ EMSS/2 13. Bretti, G., Natalini, R., Piccoli, B.: Fast algorithms for the approximation of a traffic flow model on networks. Discret. Contin. Dyn. Syst. Ser. B 6(3), 427-448 (2006). https:// doi. org/ 10. 3934/ dcdsb. 2006.6. 427 14. Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul. 9(2), 601-623 (2011). https:// doi. org/ 10. 1137/ 10081 3580 15. Bürger, R., Karlsen, K.H., Klingenberg, C., Risebro, N.H.: A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units. Nonlinear Anal. Real World Appl. 4(3), 457-481 (2003). https:// doi. org/ 10. 1016/ S1468- 1218(02) 00071-8 16. Chalons, C., Raviart, P.-A., Seguin, N.: The interface coupling of the gas dynamics equations. Q. Appl. Math. 66(4), 659-705 (2008). https:// doi. org/ 10. 1090/ S0033- 569X- 08- 01087-X 17. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases: an Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge, New York (1990) 18. Chertkov, M., Fisher, M., Backhaus, S., Bent, R., Misra, S.: Pressure fluctuations in natural gas networks caused by gas-electric coupling. In: 2015 48th Hawaii International Conference on System Sciences, pp. 2738-2747 (2015). https:// doi. org/ 10. 1109/ hicss. 2015. 330 19. Coclite, G.M., Garavello, M.: Vanishing viscosity for traffic on networks. SIAM J. Math. Anal. 42(4), 1761-1783 (2010). https:// doi. org/ 10. 1137/ 09077 1417 20. Colombo, R.M., Herty, M., Sachers, V.: On 2×2 conservation laws at a junction. SIAM J. Math. Anal. 40(2), 605-622 (2008). https:// doi. org/ 10. 1137/ 07069 0298 21. Colombo, R.M., Mauri, C.: Euler system for compressible fluids at a junction. J. Hyperbolic Differ. Equ. 5(3), 547-568 (2008). https:// doi. org/ 10. 1142/ S0219 89160 80015 93 22. Coquel, F., Jin, S., Liu, J.-G., Wang, L.: Well-posedness and singular limit of a semilinear hyperbolic relaxation system with a two-scale discontinuous relaxation rate. Arch. Ration. Mech. Anal. 214(3), 1051-1084 (2014). https:// doi. org/ 10. 1007/ s00205- 014- 0773-6 23. D’Apice, C., Göttlich, S., Herty, M., Piccoli, B.: Modeling, Simulation, and Optimization of Supply Chains, pp. 206. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2010). https:// doi. org/ 10. 1137/1. 97808 98717 600. (A continuous approach) 24. Diehl, S.: On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal. 26(6), 1425-1451 (1995). https:// doi. org/ 10. 1137/ S0036 14109 32425 33 25. Dubois, F., Le Floch, P.: Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71(1), 93-122 (1988). https:// doi. org/ 10. 1016/ 0022- 0396(88) 90040-X 26. Egger, H.: A robust conservative mixed finite element method for isentropic compressible flow on pipe networks. SIAM J. Sci. Comput. 40(1), 108-129 (2018). https:// doi. org/ 10. 1137/ 16M10 94373 27. Formaggia, L., Nobile, F., Quarteroni, A., Veneziani, A.: Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Vis. Sci. 2(2/3), 75-83 (1999). https:// doi. org/ 10. 1007/ s0079 10050 030 28. Garavello, M., Han, K., Piccoli, B.: Models for vehicular traffic on networks. In: AIMS Series on Applied Mathematics, vol. 9, pp. 474. American Institute of Mathematical Sciences (AIMS), Springfield (2016) 29. Garavello, M., Piccoli, B.: Traffic Flow on Networks: Conservation Law Models. In: AIMS Series on Applied Mathematics, vol. 1. American Inst. of Mathematical Sciences, Springfield (2006) 30. Gimse, T., Risebro, N.H.: Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23(3), 635-648 (1992). https:// doi. org/ 10. 1137/ 05230 32 31. Godlewski, E., Raviart, P.-A.: The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case. Numer. Math. 97(1), 81-130 (2004). https:// doi. org/ 10. 1007/ s00211- 002- 0438-5 32. Godlewski, E., Raviart, P.-A.: A method of coupling non-linear hyperbolic systems: examples in CFD and plasma physics. Int. J. Numer. Methods Fluids 47(10/11), 1035-1041 (2005). https:// doi. org/ 10. 1002/ fld. 856. (8th ICFD Conference on Numerical Methods for Fluid Dynamics. Part 2) 33. Hantke, M., Müller, S.: Analysis and simulation of a new multi-component two-phase flow model with phase transitions and chemical reactions. Q. Appl. Math. 76(2), 253-287 (2018). https:// doi. org/ 10. 1090/ qam/ 1498 34. Hantke, M., Müller, S.: Closure conditions for a one temperature non-equilibrium multi-component model of Baer-Nunziato type. ESAIM Proc. Surv. 66, 42-60 (2019). https:// doi. org/ 10. 1051/ proc/ 20196 6003 35. Herty, M., Jörres, C., Piccoli, B.: Existence of solution to supply chain models based on partial differential equation with discontinuous flux function. J. Math. Anal. Appl. 401(2), 510-517 (2013). https:// doi. org/ 10. 1016/j. jmaa. 2012. 12. 002 36. Herty, M., Kolbe, N., Müller, S.: Central schemes for networked scalar conservation laws. Netw. Heterog. Media 18(1), 310-340 (2023). https:// doi. org/ 10. 3934/ nhm. 20230 12 37. Herty, M., Mohring, J., Sachers, V.: A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33(7), 845-855 (2010). https:// doi. org/ 10. 1002/ mma. 1197 38. Herty, M., Müller, S., Sikstel, A.: Coupling of compressible Euler equations. Vietnam J. Math. 47(4), 769-792 (2019). https:// doi. org/ 10. 1007/ s10013- 019- 00353-7 39. Herty, M., Rascle, M.: Coupling conditions for a class of second-order models for traffic flow. SIAM J. Math. Anal. 38(2), 595-616 (2006). https:// doi. org/ 10. 1137/ 05062 617X 40. Holden, H., Risebro, N.H.: A mathematical model of traffic flow on a network of unidirectional roads. SIAM J. Math. Anal. 26(4), 999-1017 (1995). https:// doi. org/ 10. 1137/ S0036 14109 32432 89 41. Holle, Y., Herty, M., Westdickenberg, M.: New coupling conditions for isentropic flow on networks. Netw. Heterog. Media 15(4), 605-631 (2020). https:// doi. org/ 10. 3934/ nhm. 20200 16 42. Hu, J., Jin, S., Li, Q.: Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations. In: Handbook of Numerical Analysis, vol. 18, pp. 103-129. Elsevier, Amsterdam (2017). https:// doi. org/ 10. 1016/ bs. hna. 2016. 09. 001 43. Jin, S., Liu, J.-G., Wang, L.: A domain decomposition method for semilinear hyperbolic systems with two-scale relaxations. Math. Comput. 82(282), 749-779 (2013). https:// doi. org/ 10. 1090/ S0025- 5718- 2012- 02643-3 44. Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48(3), 235-276 (1995). https:// doi. org/ 10. 1002/ cpa. 31604 80303 45. Karlsen, K.H., Klingenberg, C., Risebro, N.H.: A relaxation scheme for conservation laws with a discontinuous coefficient. Math. Comput. 73(247), 1235-1260 (2003). https:// doi. org/ 10. 1090/ S0025- 5718- 03- 01625-9 46. Karlsen, K.H., Towers, J.D.: Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. J. Hyperbolic Differ. Equ. 14(04), 671-701 (2017). https:// doi. org/ 10. 1142/ S0219 89161 75002 29 47. Kolb, O., Lang, J., Bales, P.: An implicit box scheme for subsonic compressible flow with dissipative source term. Numer. Algorithms 53(2/3), 293-307 (2010). https:// doi. org/ 10. 1007/ s11075- 009- 9287-y 48. Kolbe, N.: Numerical relaxation limit and outgoing edges in a central scheme for networked conservation laws. PAMM 23(1), 202200150 (2023). https:// doi. org/ 10. 1002/ pamm. 20220 0150 49. Liu, T.-P.: Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108(1), 153-175 (1987). https:// doi. org/ 10. 1007/ BF012 10707 50. Mishra, S.: Numerical methods for conservation laws with discontinuous coefficients. In: Handbook of Numerical Analysis, vol. 18, pp. 479-506. Elsevier, Amsterdam (2017). https:// doi. org/ 10. 1016/ bs. hna. 2016. 11. 002 51. Müller, L.O., Blanco, P.J.: A high order approximation of hyperbolic conservation laws in networks: application to one-dimensional blood flow. J. Comput. Phys. 300, 423-437 (2015). https:// doi. org/ 10. 1016/j. jcp. 2015. 07. 056 52. Müller, S., Voss, A.: The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput. 28(2), 651-681 (2006). https:// doi. org/ 10. 1137/ 04061 9909 53. Reigstad, G.A., Flåtten, T., Erland Haugen, N., Ytrehus, T.: Coupling constants and the generalized Riemann problem for isothermal junction flow. J. Hyperbolic Differ. Equ. 12(1), 37-59 (2015). https:// doi. org/ 10. 1142/ S0219 89161 55000 22 54. Sikstel, A.: Analysis and numerical methods for coupled hyperbolic conservation laws. Dissertation, RWTH Aachen University, Aachen (2020). https:// doi. org/ 10. 18154/ RWTH- 2020- 07821 55. Towers, J.D.: An explicit finite volume algorithm for vanishing viscosity solutions on a network. Netw. Heterog. Media 17(1), 1 (2022). https:// doi. org/ 10. 3934/ nhm. 20210 21 56. Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., Andersson, G.: Control policies for operational coordination of electric power and natural gas transmission systems. In: 2016 American Control Conference (ACC), pp. 7478-7483 (2016). https:// doi. org/ 10. 1109/ ACC. 2016. 7526854 |
[1] | Ullika Scholz, Julia Kowalski, Manuel Torrilhon. Dispersion in Shallow Moment Equations [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2155-2195. |
[2] | Laura Río-Martín, Michael Dumbser. High-Order ADER Discontinuous Galerkin Schemes for a Symmetric Hyperbolic Model of Compressible Barotropic Two-Fluid Flows [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2119-2154. |
[3] | Matania Ben-Artzi, Jiequan Li. Regularity of Fluxes in Nonlinear Hyperbolic Balance Laws [J]. Communications on Applied Mathematics and Computation, 2023, 5(3): 1289-1298. |
[4] | Jean-Luc Guermond, Bojan Popov, Laura Saavedra. Second-Order Invariant Domain Preserving ALE Approximation of Euler Equations [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 923-945. |
[5] | M. Semplice, E. Travaglia, G. Puppo. One- and Multi-dimensional CWENOZ Reconstructions for Implementing Boundary Conditions Without Ghost Cells [J]. Communications on Applied Mathematics and Computation, 2023, 5(1): 143-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||