[1] Abgrall, R.: High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. J. Sci. Comput. 73(2), 461-494 (2017) [2] Abgrall, R.: Some remarks about conservation for residual distribution schemes. Comput. Methods Appl. Math. 18(3), 327-351 (2018) [3] Abgrall, R., Torlo, D.: Some preliminary results on a high order asymptotic preserving computationally explicit kinetic scheme. Commun. Math. Sci. 20(2), 297-326 (2022) [4] Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Num. Anal. 37(6), 1973-2004 (2000) [5] Banda, M., Sead, M.: Relaxation WENO schemes for multidimensional hyperbolic systems of conservation laws. Numer. Methods Partial Differential Equations 23(5), 1211-1234 (2007) [6] Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511-525 (1954) [7] Boscarino, S., Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), 22-51 (2013) [8] Boscarino, S., Russo, G.: On a class of uniformly accurate imex Runge-Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31(3), 1926-1945 (2009) [9] Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95, 113-170 (1999) [10] Cercignani, C.: The Boltzmann Equation and Its Applications. Springer-Verlag, New York (1988) [11] Coulette, D., Franck, E., Helluy, P., Mehrenberger, M., Navoret, L.: High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation. Comput. Fluids 190, 485-502 (2019) [12] Csomós, P., Faragó, I.: Error analysis of the numerical solution of split differential equations. Math. Comput. Model. 48(7/8), 1090-1106 (2008) [13] Dimarco, G., Pareschi, L.: Asymptotic-preserving implicit-explicit Runge-Kutta methods for nonlinear kinetic equations. SIAM J. Numer. Anal. 51(2), 1064-1087 (2013) [14] Diot, S., Loubère, R., Clain, S.: The multidimensional optimal order detection method in the three-dimensional case: very high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 73(4), 362-392 (2013) [15] Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625-7648 (2010) [16] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin (2010) [17] Iserles, A.: Order stars and saturation theorem for first-order hyperbolics. IMA J. Numer. Anal. 2, 49-61 (1982) [18] Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441-454 (1999) [19] Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48(3), 235-276 (1995) [20] Lafitte, P., Melis, W., Samaey, G.: A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws. J. Comput. Phys. 340, 1-25 (2017) [21] LeVeque, Randall J.: Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys. 131(2), 327-353 (1997) [22] Natalini, R.: A discrete kinetic approximation of entropy solution to multi-dimensional scalar conservation laws. J. Differential Equations 148, 292-317 (1998) [23] Schroll, H.J.: High resolution relaxed upwind schemes in gas dynamics. J. Sci. Comput. 17, 599-607 (2002) [24] Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995-1011 (1984) [25] Vilar, F.: A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction. J. Comput. Phys. 387, 245-279 (2019) [26] Yee, H.C., Warming, R.F., Harten, A.: On a class of TVD schemes for gas dynamic calculations. In: Glowinski, R., Liions, J.-L. (eds) Proc. of the Sixth Int'l. Symposium on Computing Methods in Applied Sciences and Engineering, VI, pp. 491-492. North-Holland Publishing Co., Amsterdam, Netherlands (1985) |