[1] Ahn, H.T., Shashkov, M.: Multi-material interface reconstruction on generalized polyhedral meshes. J. Comput. Phys. 226(2), 2096-2132 (2007) [2] Ahn, H.T., Shashkov, M.: Adaptive moment-of-fluid method. J. Comput. Phys. 228(8), 2792-2821 (2009) [3] Ancellin, M., Després, B., Jaouen, S.: Extension of generic two-component VOF interface advection schemes to an arbitrary number of components. J Comput. Phys. 473, 111721 (2022) [4] Arienti, M., Sussman, M.: An embedded level set method for sharp-interface multiphase simulations of diesel injectors. Int. J. Multiph. Flow 59, 1-14 (2014) [5] Asuri Mukundan, A., Ménard, T., Brändle de Motta, J.C., Berlemont, A.: A hybrid moment of fluid-level set framework for simulating primary atomization. J. Comput. Phys. 451, 110864 (2022) [6] Bentz, M., Knoll, R., Hasan, M., Lin, C. Low-g fluid mixing: further results from the tank pressure control experiment. In: 29th Joint Propulsion Conference and Exhibit, AIAA-93-2423. AIAA (1993) [7] Bentz, M., Meserole, J., Knoll, R.: Jet mixing in low gravity-results of the tank pressure control experiment. In: 28th Joint Propulsion Conference and Exhibit, p. 3060 (1992) [8] Bonhomme, R., Magnaudet, J., Duval, F., Piar, B.: Inertial dynamics of air bubbles crossing a horizontal fluid-fluid interface. J. Fluid Mech. 707, 405-443 (2012) [9] Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335-354 (1992) [10] Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA (1984) [11] Caboussat, A., Francois, M.M., Glowinski, R., Kothe, D.B., Sicilian, J.M.: A numerical method for interface reconstruction of triple points within a volume tracking algorithm. Math. Comput. Model. 48(11), 1957-1971 (2008) [12] Colella, P., Woodward, P.R.: The piecewise parabolic method (ppm) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174-201 (1984) [13] Cummins, S.J., Francois, M.M., Kothe, D.B.: Estimating curvature from volume fractions. Comput. Struct. 83(6/7), 425-434 (2005) [14] De Gennes, P.-G., Brochard-Wyart, F., Quéré, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer Science & Business Media, New York (2013) [15] Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Los Alamos report LA-UR-05-7571 (2005) [16] Dyadechko, V., Shashkov, M.: Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227(11), 5361-5384 (2008) [17] Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183(1), 83-116 (2002) [18] Francois, M.M., Cummins, S.J., Dendy, E.D., Kothe, D.B., Sicilian, J.M., Williams, M.W.: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213(1), 141-173 (2006) [19] Gibou, F., Fedkiw, R.P., Cheng, L.-T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205-227 (2002) [20] Glimm, J., Isaacson, E., Marchesin, D., McBryan, O.: Front tracking for hyperbolic systems. Adv. Appl. Math. 2(1), 91-119 (1981) [21] Godunov, S.: Different methods for shock waves. PhD Dissertation. Moscow State University (1954) [22] Godunov, S., Bohachevsky, I.: Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematičeskij sbornik 47(3), 271-306 (1959) [23] Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 135(2), 260-278 (1997) [24] Helsby, F., Tuson, K.: Behaviour of air bubbles in aqueous solutions. Research 8, 270-275 (1955) [25] Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201-225 (1981) [26] Hu, H., Jin, Z.: An icing physics study by using lifetime-based molecular tagging thermometry technique. Int. J. Multiph. Flow 36(8), 672-681 (2010) [27] Huang, Z., Lin, G., Ardekani, A.M.: Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows. J. Comput. Phys. 406, 109192 (2020) [28] Huang, Z., Lin, G., Ardekani, A.M.: A consistent and conservative phase-field model for thermo-gas-liquid-solid flows including liquid-solid phase change. J. Comput. Phys. 449, 110795 (2022) [29] Jemison, M., Loch, E., Sussman, M., Shashkov, M., Arienti, M., Ohta, M., Wang, Y.: A coupled level set-moment of fluid method for incompressible two-phase flows. J. Sci. Comput. 54(2/3), 454-491 (2013) [30] Jemison, M., Sussman, M., Arienti, M.: Compressible, multiphase semi-implicit method with moment of fluid interface representation. J. Comput. Phys. 279, 182-217 (2014) [31] Kim, J.: Phase field computations for ternary fluid flows. Comput. Methods Appl. Mech. Engrg. 196(45), 4779-4788 (2007) [32] Kucharik, M., Garimella, R.V., Schofield, S.P., Shashkov, M.J.: A comparative study of interface reconstruction methods for multi-material ALE simulations. J. Comput. Phys. 229(7), 2432-2452 (2010) [33] Li, G., Lian, Y., Guo, Y., Jemison, M., Sussman, M., Helms, T., Arienti, M.: Incompressible multiphase flow and encapsulation simulations using the moment-of-fluid method. Int. J. Numer. Meth. Fluids 79(9), 456-490 (2015) [34] Liu, Y., Sussman, M., Lian, Y., Hussaini, M.Y., Vahab, M., Shoele, K.: A novel supermesh method for computing solutions to the multi-material Stefan problem with complex deforming interfaces and microstructure. J. Sci. Comput. 91(1), 1-40 (2022) [35] Lyu, S., Wang, K., Zhang, Z., Pedrono, A., Sun, C., Legendre, D.: A hybrid VOF-IBM method for the simulation of freezing liquid films and freezing drops. J. Comput. Phys. 432, 110160 (2021) [36] Markstein, G.: Interaction of flow pulsations and flame propagation. J. Aeronaut. Sci. 18(6), 428-429 (1951) [37] Miao, F., Wu, B., Sun, Z., Peng, C.: Calibration method of the laser beam based on liquid lens for 3D precise measurement. Measurement 178, 109358 (2021) [38] Milcent, T., Lemoine, A.: Moment-of-fluid analytic reconstruction on 3D rectangular hexahedrons. J. Comput. Phys. 409, 109346 (2020) [39] Ohta, M., Kikuchi, D., Yoshida, Y., Sussman, M.: Robust numerical analysis of the dynamic bubble formation process in a viscous liquid. Int. J. Multiph. Flow 37(9), 1059-1071 (2011) [40] Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225-246 (2005) [41] Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12-49 (1988) [42] Pathak, A., Raessi, M.: A three-dimensional volume-of-fluid method for reconstructing and advecting three-material interfaces forming contact lines. J. Comput. Phys. 307, 550-573 (2016) [43] Pei, C., Vahab, M., Sussman, M., Hussaini, M.Y.: A hierarchical space-time spectral element and moment-of-fluid method for improved capturing of vortical structures in incompressible multi-phase/multi-material flows. J. Sci. Comput. 81(3), 1527-1566 (2019) [44] Qiu, R., Huang, R., Xiao, Y., Wang, J., Zhang, Z., Yue, J., Zeng, Z., Wang, Y.: Physics-informed neural networks for phase-field method in two-phase flow. Phys. Fluids 34(5), 052109 (2022) [45] Remmerswaal, R.A., Veldman, A.E.: Parabolic interface reconstruction for 2D volume of fluid methods. J. Comput. Phys. 469, 111473 (2022) [46] Salas, M.D.: Shock fitting method for complicated two-dimensional supersonic flows. AIAA J. 14(5), 583-588 (1976) [47] Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425-467 (1999) [48] Schofield, S.P., Garimella, R.V., Francois, M.M., Loubère, R.: Material order-independent interface reconstruction using power diagrams. Int. J. Numer. Meth. Fluids 56(6), 643 (2008) [49] Schofield, S.P., Garimella, R.V., Francois, M.M., Loubère, R.: A second-order accurate material-order-independent interface reconstruction technique for multi-material flow simulations. J. Comput. Phys. 228(3), 731-745 (2009) [50] Shetabivash, H., Dolatabadi, A., Paraschivoiu, M.: A multiple level-set approach for modelling containerless freezing process. J. Comput. Phys. 415, 109527 (2020) [51] Shin, S., Juric, D.: A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques. Int. J. Numer. Meth. Fluids 60(7), 753-778 (2009) [52] Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439-471 (1988) [53] Sijoy, C., Chaturvedi, S.: Volume-of-fluid algorithm with different modified dynamic material ordering methods and their comparisons. J. Comput. Phys. 229(10), 3848-3863 (2010) [54] Smith, K.A., Solis, F.J., Chopp, D.: A projection method for motion of triple junctions by level sets. Interfac Free Bound 4(3), 263-276 (2002) [55] Starinshak, D.P., Karni, S., Roe, P.L.: A new level set model for multimaterial flows. J. Comput. Phys. 262, 1-16 (2014) [56] Sussman, M.: A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187(1), 110-136 (2003) [57] Sussman, M., Ohta, M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31(4), 2447-2471 (2009) [58] Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301-337 (2000) [59] Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146-159 (1994) [60] Tatebe, O.: The multigrid preconditioned conjugate gradient method. In: the Sixth Copper Mountain Conference on Multigrid Methods, Part 2. NASA, Copper Mountain (1993) [61] Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100(1), 25-37 (1992) [62] Vahab, M., Pei, C., Hussaini, M.Y., Sussman, M., Lian, Y.: An adaptive coupled level set and moment-of-fluid method for simulating droplet impact and solidification on solid surfaces with application to aircraft icing. In: 54th AIAA Aerospace Sciences Meeting, p. 1340 (2016) [63] Vahab, M., Sussman, M., Shoele, K.: Fluid-structure interaction of thin flexible bodies in multi-material multi-phase systems. J. Comput. Phys. 429, 110008 (2021) [64] Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101-136 (1979) [65] Vu, T.V., Tryggvason, G., Homma, S., Wells, J.C.: Numerical investigations of drop solidification on a cold plate in the presence of volume change. Int. J. Multiph. Flow 76, 73-85 (2015) [66] Welch, S.W., Wilson, J.: A volume of fluid based method for fluid flows with phase change. J. Comput. Phys. 160(2), 662-682 (2000) [67] Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335-362 (1979) |