1. Besse, N., Latu, G., Ghizzo, A., Sonnendrücker, E., Bertrand, P.: A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system. J. Comput. Phys. 227(16), 7889-7916 (2008) 2. Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-Hill, New York (1985) 3. Blanesa, S., Moanb, P.C.: Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods. J. Comput. Appl. Math. 142, 313–330 (2002) 4. Bordas, S., Nguyen, P.V., Dunant, C., Guidoum, A., Nguyen-Dang, H.: An extended fnite element library. Int. J. Numer. Methods Eng. 71(6), 703–732 (2007) 5. Boyd, J.: Chebyshev and Fourier Spectrum Methods. Springer, New York (1989) 6. Burgan, J., Gutierrez, J., Fijalkow, E., Navet, M., Feix, M.: Self-similar solutions for Vlasov and waterbag models. J. Plasma Phys. 19(1), 135–146 (1978) 7. Cai, X., Qiu, J., Qiu, J.-M.: A conservative semi-Lagrangian HWENO method for the Vlasov equation. J. Comput. Phys. 323, 95–114 (2016) 8. Carrillo, J.A., Vecil, F.: Nonoscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29(3), 1179–1206 (2007) 9. Chen, G., Chacon, L.: A multi-dimensional, energy-and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm. Comput. Phys. Commun. 197, 73–87 (2015) 10. Chen, G., Chacón, L., Barnes, D.C.: An energy-and charge-conserving, implicit, electrostatic particlein-cell algorithm. J. Comput. Phys. 230(18), 7018–7036 (2011) 11. Cheng, C.-Z., Knorr, G.: The integration of the Vlasov equation in confguration space. J. Comput. Phys. 22(3), 330–351 (1976) 12. Cheng, Y., Christlieb, A.J., Zhong, X.: Energy-conserving discontinuous Galerkin methods for the Vlasov-Ampere system. J. Comput. Phys. 256, 630–655 (2014) 13. Cheng, Y., Christlieb, A.J., Zhong, X.: Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system. J. Comput. Phys. 279, 145–173 (2014) 14. Christlieb, A., Guo, W., Jiang, Y., Yang, H.: A moving mesh WENO method based on exponential polynomials for one-dimensional conservation laws. J. Comput. Phys. 380, 334–354 (2019) 15. Christlieb, A., Hitchon, W., Lawler, J., Lister, G.: Integral and Lagrangian simulations of particle and radiation transport in plasma. J. Phys. D Appl. Phys. 42(19), 194007 (2009) 16. Christlieb, A., Sands, W., Yang, H.: Superconvergent non-polynomial approximations (2020). https:// arxiv.org/abs/2011.02654v2. Accessed 17 Jun 2021 17. Christlieb, A.J., Krasny, R., Verboncoeur, J.P., Emhof, J.W., Boyd, I.D.: Grid-free plasma simulation techniques. IEEE Trans. Plasma Sci. 34(2), 149–165 (2006) 18. Colombi, S., Touma, J.: Vlasov-Poisson: the waterbag method revisited. Commun. Nonlinear Sci. Numer. Simul. 13(1), 46–52 (2008) 19. Crouseilles, N., Faou, E., Mehrenberger, M.: High order Runge-Kutta-Nystrom splitting methods for the Vlasov-Poisson equation. inria-00633934 (2011) 20. Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150(3), 247–266 (2003) 21. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172(1), 166–187 (2001) 22. Gibbon, P., Speck, R., Karmakar, A., Arnold, L., Frings, W., Berberich, B., Reiter, D., Mašek, M.: Progress in mesh-free plasma simulation with parallel tree codes. IEEE Trans. Plasma Sci. 38(9), 2367-2376 (2010) 23. Güçlü, Y., Christlieb, A.J., Hitchon, W.N.: Arbitrarily high order convected scheme solution of the Vlasov-Poisson system. J. Comput. Phys. 270, 711–752 (2014) 24. Ha, Y., Kim, C.H., Yang, H., Yoon, J.: Sixth-order weighted essentially nonoscillatory schemes based on exponential polynomials. SIAM J. Sci. Comput. 38, 1987–2017 (2016) 25. Ha, Y., Kim, C.H., Yang, H., Yoon, J.: A sixth-order weighted essentially nonoscillatory schemes based on exponential polynomials for Hamilton-Jacobi equations. J. Sci. Comput. 75, 1675–1700 (2018) 26. Ha, Y., Kim, C.H., Yang, H., Yoon, J.: Improving accuracy of the ffth-order WENO scheme by using the exponential approximation space. SIAM J. Numer. Anal. 59, 143–172 (2021) 27. Hitchon, W., Koch, D., Adams, J.: An efcient scheme for convection-dominated transport. J. Comput. Phys. 83(1), 79–95 (1989) 28. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-Hill, New York (1981) 29. Jiang, G.-S., Shu, C.-W.: Efcient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996) 30. Karlin, S., Studden, W.: Tchebychef Systems: with Applications in Analysis and Statistics. Interscience Publishers, Geneva (1966) 31. Laborde, P., Pommier, J., Renard, Y., Salaün, M.: High-order extended fnite element method for cracked domains. Int. J. Numer. Methods Eng. 64(3), 354–381 (2005) 32. Markidis, S., Lapenta, G.: The energy conserving particle-in-cell method. J. Comput. Phys. 230, 7037-7052 (2011) 33. Matyash, K., Schneider, R., Sydora, R., Taccogna, F.: Application of a grid-free kinetic model to the collisionless sheath. Contrib. Plasma Phys. 48(1/2/3), 116–120 (2008) 34. Moës, N., Dolbow, J., Belytschko, T.: A fnite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999) 35. Nakamura, T., Yabe, T.: Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space. Comput. Phys. Commun. 120(2/3), 122–154 (1999) 36. Pohn, E., Shoucri, M., Kamelander, G.: Eulerian Vlasov codes. Comput. Phys. Commun. 166, 81–93 (2005) 37. Qiu, J.-M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229(4), 1130–1149 (2010) 38. Qiu, J.-M., Russo, G.: A high order multi-dimensional characteristic tracing strategy for the VlasovPoisson system. J. Sci. Comput. 71(1), 414–434 (2017) 39. Qiu, J.-M., Shu, C.-W.: Conservative semi-Lagrangian fnite diference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10, 979–1000 (2011) 40. Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov-Poisson system. J. Comput. Phys. 230(23), 8386-8409 (2011) 41. Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230(16), 6203–6232 (2011) 42. Siddi, L., Lapenta, G., Gibbon, P.: Mesh-free Hamiltonian implementation of two dimensional Darwin model. Phys. Plasmas 24(8), 082103 (2017) 43. Sirajuddin, D., Hitchon, W.N.: A truly forward semi-Lagrangian WENO scheme for the Vlasov-Poisson system. J. Comput. Phys. 392, 619–665 (2019) 44. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999) 45. Tabarraei, A., Sukumar, N.: Extended fnite element method on polygonal and quadtree meshes. Comput. Methods Appl. Mech. Eng. 197(5), 425–438 (2008) 46. Verboncoeur, J.P.: Particle simulation of plasmas: review and advances. Plasma Phys. Control. Fusion 47(5A), A231 (2005) 47. Wang, B., Miller, G.H., Colella, P.: A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas. SIAM J. Sci. Comput. 33(6), 3509–3537 (2011) 48. Watanabe, T.H., Sugama, H.: Vlasov and drift kinetic simulation methods based on the symplectic integrator. Transp. Theory Stat. Phys. 34, 287–309 (2005) 49. Wolf, E.M., Causley, M., Christlieb, A., Bettencourt, M.: A particle-in-cell method for the simulation of plasmas based on an unconditionally stable feld solver. J. Comput. Phys. 326, 342–372 (2016) 50. Xiong, T., Qiu, J.-M., Xu, Z.F., Christlieb, A.: High order maximum principle preserving semiLagrangian fnite diference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618–639 (2014) 51. Xiong, T., Russo, G., Qiu, J.-M.: Conservative multi-dimensional semi-Lagrangian fnite diference scheme: stability and applications to the kinetic and fuid simulations. J. Sci. Comput. 79(2), 1241-1270 (2019) 52. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990) 53. Zhu, J., Qiu, J.: Trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems. Commun. Comput. Phys. 8, 1242–1263 (2010) 54. Zhu, J., Qiu, J.: WENO schemes and their application as limiters for RKDG methods based on trigonometric approximation spaces. J. Sci. Comput. 55, 606–644 (2013) |