1.Abbas, M., Ern, A., Pignet, N.:Hybrid high-order methods for fnite deformations of hyperelastic materials.Comput.Mech.62(4), 909-928 (2018) 2.Abbas, M., Ern, A., Pignet, N.:A hybrid high-order method for incremental associative plasticity with small deformations.Comput.Methods Appl.Mech.Eng.346, 891-912 (2019) 3.Angel, J.B., Banks, J.W., Henshaw, W.D.:High-order upwind schemes for the wave equation on overlapping grids:Maxwell's equations in second-order form.J.Comput.Phys.352, 534-567 (2018) 4.Appelö, D., Hagstrom, T.:A new discontinuous Galerkin formulation for wave equations in secondorder form.SIAM J.Numer.Anal.53(6), 2705-2726 (2015) 5.Ayuso de Dios, B., Lipnikov, K., Manzini, G.:The nonconforming virtual element method.ESAIM Math.Model.Numer.Anal.50(3), 879-904 (2016) 6.Banks, J.W., Hagstrom, T., Jacangelo, J.:Galerkin diferences for acoustic and elastic wave equations in two space dimensions.J.Comput.Phys.372, 864-892 (2018) 7.Bécache, E., Joly, P., Tsogka, C.:An analysis of new mixed fnite elements for the approximation of wave propagation problems.SIAM J.Numer.Anal.37(4), 1053-1084 (2000) 8.Botti, L., Di Pietro, D.A., Droniou, J.:A hybrid high-order method for the incompressible NavierStokes equations based on Temam's device.J.Comput.Phys.376, 786-816 (2019) 9.Botti, M., Di Pietro, D.A., Sochala, P.:A hybrid high-order method for nonlinear elasticity.SIAM J.Numer.Anal.55(6), 2687-2717 (2017) 10.Burman, E., Duran, O., Ern, A., Steins, M.:Convergence analysis of hybrid high-order methods for the wave equation.J.Sci.Comput.(2021).https://hal.archives-ouvertes.fr/hal-02922720 11.Burman, E., Ern, A.:An unftted hybrid high-order method for elliptic interface problems.SIAM J.Numer.Anal.56(3), 1525-1546 (2018) 12.Burman, E., Ern, A., Fernández, M.A.:Explicit Runge-Kutta schemes and fnite elements with symmetric stabilization for frst-order linear PDE systems.SIAM J.Numer.Anal.48(6), 2019-2042 (2010) 13.Calo, V., Cicuttin, M., Deng, Q., Ern, A.:Spectral approximation of elliptic operators by the hybrid high-order method.Math.Comput.88(318), 1559-1586 (2019) 14.Cascavita, K.L., Bleyer, J., Chateau, X., Ern, A.:Hybrid discretization methods with adaptive yield surface detection for Bingham pipe fows.J.Sci.Comput.77(3), 1424-1443 (2018) 15.Chave, F., Di Pietro, D., Lemaire, S.:A three-dimensional hybrid high-order method for magnetostatics (2020).https://hal.archives-ouvertes.fr/hal-02407175 16.Chou, C.-S., Shu, C.-W., Xing, Y.:Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media.J.Comput.Phys.272, 88-107 (2014) 17.Chung, E.T., Engquist, B.:Optimal discontinuous Galerkin methods for wave propagation.SIAM J.Numer.Anal.44(5), 2131-2158 (2006) 18.Cicuttin, M., Di Pietro, D.A., Ern, A.:Implementation of discontinuous skeletal methods on arbitrarydimensional, polytopal meshes using generic programming.J.Comput.Appl.Math.344, 852-874 (2018) 19.Cockburn, B., Di Pietro, D.A., Ern, A.:Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods.ESAIM Math.Model Numer.Anal.50(3), 635-650 (2016) 20.Cockburn, B., Fu, Z., Hungria, A., Ji, L., Sánchez, M.A., Sayas, F.-J.:Stormer-Numerov HDG methods for acoustic waves.J.Sci.Comput.75(2), 597-624 (2018) 21.Cockburn, B., Gopalakrishnan, J., Lazarov, R.:Unifed hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems.SIAM J.Numer.Anal.47(2), 1319-1365 (2009) 22.Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.:Higher order triangular fnite elements with mass lumping for the wave equation.SIAM J.Numer.Anal.38(6), 2047-2078 (2001) 23.Cohen, G.C.:Higher-Order Numerical Methods for Transient Wave Equations.Springer, Berlin (2002) 24.Di Pietro, D.A., Droniou, J., Manzini, G.:Discontinuous skeletal gradient discretisation methods on polytopal meshes.J.Comput.Phys.355, 397-425 (2018) 25.Di Pietro, D.A., Ern, A.:A hybrid high-order locking-free method for linear elasticity on general meshes.Comput.Methods Appl.Mech.Eng.283, 1-21 (2015) 26.Di Pietro, D.A., Ern, A., Lemaire, S.:An arbitrary-order and compact-stencil discretization of difusion on general meshes based on local reconstruction operators.Comput.Methods Appl.Math.14(4), 461-472 (2014) 27.Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.:A discontinuous skeletal method for the viscositydependent Stokes problem.Comput.Methods Appl.Mech.Eng.306, 175-195 (2016) 28.Ezziani, A., Joly, P.:Local time stepping and discontinuous Galerkin methods for symmetric frst order hyperbolic systems.J.Comput.Appl.Math.234(6), 1886-1895 (2010) 29.Falk, R.S., Richter, G.R.:Explicit fnite element methods for symmetric hyperbolic equations.SIAM J.Numer.Anal.36(3), 935-952 (1999) 30.Giraldo, F.X., Taylor, M.A.:A diagonal-mass-matrix triangular-spectral-element method based on cubature points.J.Eng.Math.56(3), 307-322 (2006) 31.Griesmaier, R., Monk, P.:Discretization of the wave equation using continuous elements in time and a hybridizable discontinuous Galerkin method in space.J.Sci.Comput.58(2), 472-498 (2014) 32.Grote, M.J., Schneebeli, A., Schötzau, D.:Discontinuous Galerkin fnite element method for the wave equation.SIAM J.Numer.Anal.44(6), 2408-2431 (2006) 33.Hesthaven, J.S., Warburton, T.:Nodal high-order methods on unstructured grids.I.Time-domain solution of Maxwell's equations.J.Comput.Phys.181(1), 186-221 (2002) 34.Krenk, S.:Energy conservation in Newmark based time integration algorithms.Comput.Methods Appl.Mech.Eng.195(44/45/46/47), 6110-6124 (2006) 35.Kronbichler, M., Schoeder, S., Müller, C., Wall, W.A.:Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation.Int.J.Numer.Methods Eng.106(9), 712-739 (2016) 36.Lions, J.-L., Magenes, E.:Non-homogeneous boundary value problems and applications, vols.I, II.Springer, New York (1972) (Translated from the French by P.Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181-182) 37.Marazzato, F., Ern, A., Mariotti, C., Monasse, L.:An explicit pseudo-energy conserving time-integration scheme for Hamiltonian dynamics.Comput.Methods Appl.Mech.Eng.347, 906-927 (2019) 38.Monk, P., Richter, G.R.:A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media.J.Sci.Comput.22(23), 443-477 (2005) 39.Nguyen, N.C., Peraire, J.:Hybridizable discontinuous Galerkin methods for partial diferential equations in continuum mechanics.J.Comput.Phys.231(18), 5955-5988 (2012) 40.Nguyen, N.C., Peraire, J., Cockburn, B.:High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics.J.Comput.Phys.230(10), 3695-3718 (2011) 41.Sánchez, M.A., Ciuca, C., Nguyen, N.C., Peraire, J., Cockburn, B.:Symplectic Hamiltonian HDG methods for wave propagation phenomena.J.Comput.Phys.350, 951-973 (2017) 42.Sjögreen, B., Petersson, N.A.:A fourth order accurate fnite diference scheme for the elastic wave equation in second order formulation.J.Sci.Comput.52(1), 17-48 (2012) 43.Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.:An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation.Comput.Methods Appl.Mech.Eng.300, 748-769 (2016) 44.Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.:Polymesher:a general-purpose mesh generator for polygonal elements written in Matlab.Struct.Multidisc.Optim.45, 309-328 (2012) 45.Virta, K., Mattsson, K.:Acoustic wave propagation in complicated geometries and heterogeneous media.J.Sci.Comput.61(1), 90-118 (2014) |