Communications on Applied Mathematics and Computation ›› 2022, Vol. 4 ›› Issue (1): 143-179.doi: 10.1007/s42967-020-00102-5
Previous Articles Next Articles
Vít Dolejší, Filip Roskovec
Received:
2020-06-16
Revised:
2020-11-02
Online:
2022-03-20
Published:
2022-03-01
Contact:
Vít Dolejší, Filip Roskovec
E-mail:dolejsi@karlin.mf.cuni.cz;roskovec@gmail.com
Supported by:
CLC Number:
Vít Dolejší, Filip Roskovec. Goal-Oriented Anisotropic hp-Adaptive Discontinuous Galerkin Method for the Euler Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 143-179.
1. Balan, A., Woopen, M., May, G.:Adjoint-based hp-adaptivity on anisotropic meshes for high-order compressible fow simulations. Comput. Fluids 139, 47-67 (2016) 2. Bangerth, W., Rannacher, R.:Adaptive Finite Element Methods for Diferential Equations. Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag, Zurich (2003) 3. Bartoš, O., Dolejší, V., May, G., Rangarajan, A., Roskovec, F.:Goal-oriented anisotropic hp-mesh optimization technique for linear convection-difusion-reaction problem. Comput. Math. Appl. 78(9), 2973-2993 (2019) 4. Bassi, F., Rebay, S.:High-order accurate discontinuous fnite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251-285 (1997) 5. Bassi, F., Rebay, S.:Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 40, 197-207 (2002) 6. Becker, R., Rannacher, R.:An optimal control approach to a-posteriori error estimation in fnite element methods. Acta Numer. 10, 1-102 (2001) 7. Cao, W.:On the error of linear interpolation and the orientation, aspect ratio, and internal angles of a triangle. SIAM J. Numer. Anal. 43(1), 19-40 (2005) 8. Ceze, M., Fidkowski, K.J.:Anisotropic hp-adaptation framework for functional prediction. AIAA J. 51(2), 492-509 (2012) 9. Dolejší, V.:A design of residual error estimates for a high order BDF-DGFE method applied to compressible fows. Int. J. Numer. Methods Fluids 73(6), 523-559 (2013) 10. Dolejší, V.:Anisotropic hp-adaptive method based on interpolation error estimates in the Lq-norm. Appl. Numer. Math. 82, 80-114 (2014) 11. Dolejší, V., Feistauer, M.:Semi-implicit discontinuous Galerkin fnite element method for the numerical solution of inviscid compressible fow. J. Comput. Phys. 198(2), 727-746 (2004) 12. Dolejší, V., Feistauer, M.:Discontinuous Galerkin Method-Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics, vol. 48. Springer, Cham (2015) 13. Dolejší, V., May, G., Rangarajan, A., Roskovec, F.:A goal-oriented high-order anisotropic mesh adaptation using discontinuous Galerkin method for linear convection-difusion-reaction problems. SIAM J. Sci. Comput. 41(3), A1899-A1922 (2019) 14. Dolejší, V., Roskovec, F.:Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems. Appl. Math. 62(6), 579-605 (2017) 15. Dolejší, V., Roskovec, F., Vlasák, M.:Residual based error estimates for the space-time discontinuous Galerkin method applied to the compressible fows. Comput. Fluids 117, 304-324 (2015) 16. Feistauer, M., Kučera, V.:On a robust discontinuous Galerkin technique for the solution of compressible fow. J. Comput. Phys. 224, 208-221 (2007) 17. Feistauer, M., Felcman, J., Straškraba, I.:Mathematical and Computational Methods for Compressible Flow. Clarendon Press, Oxford (2003) 18. Fidkowski, K., Darmofal, D.:Review of output-based error estimation and mesh adaptation in computational fuid dynamics. AIAA J. 49(4), 673-694 (2011) 19. Fidkowski, K.J., Luo, Y.:Output-based space-time mesh adaptation for the compressible Navier-Stokes equations. J. Comput. Phys. 230(14), 5753-5773 (2011) 20. Georgoulis, E.H., Hall E., Houston, P.:Discontinuous Galerkin methods for advection-difusion-reaction problems on anisotropically refned meshes. SIAM J. Sci. Comput. 30(1), 246-271 (2007) 21. Giani, S., Houston, P.:Anisotropic hp-adaptive discontinuous Galerkin fnite element methods for compressible fuid fows. Int. J. Numer. Anal. Model. 9(4), 928-949 (2012) 22. Giles, M., Pierce, N.:Adjoint equations in CFD-duality, boundary conditions and solution behaviour. In:13th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (1997) 23. Giles, M., Süli, E.:Adjoint methods for PDEs:a posteriori error analysis and postprocessing by duality. Acta Numer. 11, 145-236 (2002) 24. Harriman, K., Gavaghan, D.J., Süli, E.:The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin fnite element method. Oxford University Computing Laboratory, Tech. rep. (2004) 25. Hartmann, R.:The role of the Jacobian in the adaptive discontinuous Galerkin method for the compressible Euler equations. In:Warnecke, G. (ed.) Analysis and Numerics for Conservation Laws, pp. 301-316. Springer, Berlin (2005) 26. Hartmann, R.:Derivation of an adjoint consistent discontinuous Galerkin discretization of the compressible Euler equations. In:Lube, G., Papin, G. (eds.) International Conference on Boundary and Interior Layers, Germany (2006) 27. Hartmann, R.:Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45(6), 2671-2696 (2007) 28. Hartmann, R., Houston, P.:Adaptive discontinuous Galerkin fnite element methods for the compressible Euler equations. J. Comput. Phys. 183(2), 508-532 (2002) 29. Hartmann, R., Houston, P.:Symmetric interior penalty DG methods for the compressible NavierStokes equations I:method formulation. Int. J. Numer. Anal. Model. 1, 1-20 (2006) 30. Hartmann, R., Houston, P.:Symmetric interior penalty DG methods for the compressible NavierStokes equations Ⅱ:goal-oriented a posteriori error estimation. Int. J. Numer. Anal. Model. 3, 141-162 (2006) 31. Hartmann, R., Leicht, T.:Generalized adjoint consistent treatment of wall boundary conditions for compressible fows. J. Comput. Phys. 300, 754-778 (2015) 32. Leicht, T., Hartmann, R.:Anisotropic mesh refnement for discontinuous Galerkin methods in twodimensional aerodynamic fow simulations. Int. J. Numer. Methods Fluids 56(11), 2111-2138 (2008) 33. Loseille, A., Dervieux, A., Alauzet, F.:Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations. J. Comput. Phys. 229(8), 2866-2897 (2010) 34. Lu, J.:An a posteriori control framework for adaptive precision optimization using discontinuous Galerkin fnite element method. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (2005) 35. Rangarajan, A., May, G., Dolejsi, V.:Adjoint-based anisotropic hp-adaptation for discontinuous Galerkin methods using a continuous mesh model. J. Comput. Phys. 409, 109321 (2020) 36. Sharbatdar, M., Ollivier-Gooch, C.:Mesh adaptation using C1 interpolation of the solution in an unstructured fnite volume solver. Int. J. Numer. Methods Fluids 86(10), 637-654 (2018) 37. Vassberg, J.C., Jameson, A.:In pursuit of grid convergence for two-dimensional Euler solutions. J. Aircr. 47(4), 1152-1166 (2010) 38. Venditti, D., Darmofal, D.:Grid adaptation for functional outputs:application to two-dimensional inviscid fows. J. Comput. Phys. 176(1), 40-69 (2002) 39. Venditti, D., Darmofal, D.:Anisotropic grid adaptation for functional outputs:application to twodimensional viscous fows. J. Comput. Phys. 187(1), 22-46 (2003) 40. Vijayasundaram, G.:Transonic fow simulation using upstream centered scheme of Godunov type in fnite elements. J. Comput. Phys. 63, 416-433 (1986) 41. Yano, M., Darmofal, D.L.:An optimization-based framework for anisotropic simplex mesh adaptation. J. Comput. Phys. 231(22), 7626-7649 (2012) |
[1] | Francis Filbet, Tao Xiong. Conservative Discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 34-59. |
[2] | Zhanjing Tao, Juntao Huang, Yuan Liu, Wei Guo, Yingda Cheng. An Adaptive Multiresolution Ultra-weak Discontinuous Galerkin Method for Nonlinear Schrödinger Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 60-83. |
[3] | Hongjuan Zhang, Boying Wu, Xiong Meng. A Local Discontinuous Galerkin Method with Generalized Alternating Fluxes for 2D Nonlinear Schrödinger Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 84-107. |
[4] | Yuqing Miao, Jue Yan, Xinghui Zhong. Superconvergence Study of the Direct Discontinuous Galerkin Method and Its Variations for Difusion Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 180-204. |
[5] | Liyao Lyu, Zheng Chen. Local Discontinuous Galerkin Methods with Novel Basis for Fractional Difusion Equations with Non-smooth Solutions [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 227-249. |
[6] | Qi Tao, Yan Xu, Xiaozhou Li. Negative Norm Estimates for Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for Nonlinear Hyperbolic Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 250-270. |
[7] | Haijin Wang, Qiang Zhang. The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Difusion Problems [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 271-292. |
[8] | Yuan Xu, Qiang Zhang. Superconvergence Analysis of the Runge-Kutta Discontinuous Galerkin Method with Upwind-Biased Numerical Flux for Two-Dimensional Linear Hyperbolic Equation [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 319-352. |
[9] | Jie Du, Eric Chung, Yang Yang. Maximum-Principle-Preserving Local Discontinuous Galerkin Methods for Allen-Cahn Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 353-379. |
[10] | Zheng Sun, Chi-Wang Shu. Enforcing Strong Stability of Explicit Runge-Kutta Methods with Superviscosity [J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 671-700. |
[11] | Oleksii Beznosov, Daniel Appel?. Hermite-Discontinuous Galerkin Overset Grid Methods for the Scalar Wave Equation [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 391-418. |
[12] | Leilei Wei, Shuying Zhai, Xindong Zhang. Error Estimate of a Fully Discrete Local Discontinuous Galerkin Method for Variable-Order Time-Fractional Diffusion Equations [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 429-444. |
[13] | Alexander Kurganov, Zhuolin Qu, Olga S. Rozanova, Tong Wu. Adaptive Moving Mesh Central-Upwind Schemes for Hyperbolic System of PDEs: Applications to Compressible Euler Equations and Granular Hydrodynamics [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 445-480. |
[14] | Jayesh Badwaik, Praveen Chandrashekar, Christian Klingenberg. Single-Step Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for 1-D Euler Equations [J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 541-579. |
[15] | Somayeh Yeganeh, Reza Mokhtari, Jan S. Hesthaven. A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Difusion Equations [J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 689-709. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||