1. Arbogast, T.:Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J. Numer. Anal. 42, 576-598(2004) 2. Arbogast, T., Boyd, K.J.:Subgrid upscaling and mixed multiscale finite elements. SIAM J. Numer. Anal. 44, 1150-1171(2006) 3. Arnold, D.N., Falk, R.S., Winther, R.:Preconditioning in H(div) and applications. Math. Comp. 66, 957-984(1997) 4. Araya, R., Harder, C., Paredes, D., Valentin, F.:Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51, 3505-3531(2013) 5. Babuška, I., Osborn, J.E.:Generalized finite element methods:their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510-536(1983) 6. Brezzi, F., Fortin, M.:Mixed and Hybrid Finite Element Methods. Springer, New York (1991) 7. Christie, M., Blunt, M.J.:Tenth SPE comparative solution project:a comparison of upscaling techniques. SPE Res. Eval. Eng. 4, 308-317(2001) 8. Chung, E.T., Efendiev, Y., Lee, C.S.:Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13, 338-366(2015) 9. Chen, Z., Hou, T.Y.:A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp. 72, 541-576(2003) 10. Chen, Z.X., Huan, G.R., Ma, Y.L.:Computational Methods for Multiphase Flows in Porous Media, vol. 2, SIAM, Philadelphia (2006) 11. Dolean, V., Nataf, F., Scheichl, R., Spillane, N.:Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12, 391-414(2012) 12. Elman, H.C., Golub, G.H.:Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645-1661(1994) 13. Elman, H.C., Silvester, D.J., Wathen, A.J.:Finite Elements and Fast Iterative Solvers:With Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005) 14. Efendiev, Y., Galvis, J., Hou, T.Y.:Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116-135(2013) 15. Galvis, J., Efendiev, Y.:Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8, 1461-1483(2010) 16. Galvis, J., Efendiev, Y.:Domain decomposition preconditioners for multiscale flows in high contrast media:reduced dimension coarse spaces. Multiscale Model. Simul. 8, 1621-1644(2010) 17. Graham, I.G., Lechner, P.O., Scheichl, R.:Domain decomposition for multiscale PDEs. Numer. Math. 106, 589-626(2007) 18. Hecht, F.:New development in FreeFem++. J. Numer. Math. 20, 251-265(2012) 19. Hellman, F., Målqvist, A.:Contrast independent localization of a multiscale problems. Multiscale Model. Simul. 15, 1325-1355(2017) 20. Hiptmair, R.:Multigrid method for H(div) in three dimensions. Electron. Trans. Numer. Anal. 6, 133-152(1997) 21. Hiptmair, R., Xu, J.:Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45, 2483-2509(2007) 22. Hou, T.Y., Wu, X.H.:A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169-189(1997) 23. Hu, Q.Y., Shu, S., Zou, J.:A discrete weighted Helmholtz decomposition and its application. Numer. Math. 125, 153-189(2013) 24. Jenny, P., Lee, S.H., Tchelepi, H.A.:Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47-67(2003) 25. Målqvist, A., Peterseim, D.:Localization of elliptic multiscale problems. Math. Comp. 83, 2583-2603(2014) 26. Mathew, T.P.:Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part I:algorithms and numerical results. Numer. Math. 65, 445-468(1993) 27. Mathew, T.P.:Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part Ⅱ:convergence theory. Numer. Math. 65, 469-492(1993) 28. Oh, D.S.:An overlapping schwarz algorithm for Raviart-Thomas vector fields with discontinuous coefficients. SIAM J. Numer. Anal. 51, 297-321(2013) 29. Paige, C.C., Saunders, M.A.:Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617-629(1975) 30. Rusten, T., Winther, R.:A preconditioned iterative method for saddlepoint problems. SIAM J. Matrix Anal. Appl. 13, 887-904(1992) 31. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.:Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126, 741-770(2014) 32. Spillane, N., Rixen, D.J.:Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms. Int. J. Numer. Methods Eng. 95, 953-990(2013) 33. Toselli, A., Widlund, O.B.:Domain Decomposition Methods-Algorithms and Theory, vol. 34. Springer, New York (2005) 34. Vassilevski, P.S., Lazarov, R.D.:Preconditioning mixed finite element saddle-point elliptic problems. Numer. Linear Algebra Appl. 3, 1-20(1996) 35. Vassilevski, P.S., Wang, J.P.:Multilevel iterative methods for mixed finite element discretizations of elliptic problems. Numer. Math. 63, 503-520(1992) 36. Wohlmuth, B.I., Toselli, A., Widlund, O.B.:An iterative substructuring method for Raviart-Thomas vector fields in three dimensions. SIAM J. Numer. Anal. 37, 1657-1676(2000) 37. Xie, H., Xu, X.:Mass conservative domain decomposition preconditioners for multiscale finite volume method. Multiscale Model. Simul. 12, 1667-1690(2014) |