1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979) 2. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998) 3. Bailo, R., Carrillo, J.A., Hu, J.: Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient-flow structure. Commun. Math. Sci. 18, 1259–1303 (2020) 4. Bazant, M.Z., Thornton, K., Ajdari, A.: Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 021506 (2004) 5. Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. Theory Methods Appl. 23, 1189–1209 (1994) 6. Bolley, F., Canizo, J.A., Carrillo, J.A.: Stochastic mean-field limit: non-Lipschitz forces and swarming. Math. Models Methods Appl. Sci. 21, 2179–2210 (2011) 7. Bonizzoni, F., Braukhoff, M., Jüngel, A., Perugia, I.: A structure-preserving discontinuous Galerkin scheme for the Fisher-KPP equation. Numer. Math. 146, 119–157 (2020) 8. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958) 9. Carrillo, J.A., Craig, K., Wang, L., Wei, C.: Primal dual methods for Wasserstein gradient flows. Found. Comput. Math. 2022, 1–55 (2022) 10. Carrillo, J.A., Wang, L., Xu, W., Yan, M.: Variational asymptotic preserving scheme for the VlasovPoisson-Fokker-Planck system. Multiscale Model. Simul. 19, 478–505 (2021) 11. Doi, M.: Onsager’s variational principle in soft matter. J. Phys.: Condens. Matter 23, 284118 (2011) 12. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics, vol. 73. Oxford University Press, Oxford (1988) 13. Duan, C., Chen, W., Liu, C., Wang, C., Zhou, S.: Convergence analysis of structure-preserving numerical methods for nonlinear Fokker-Planck equations with nonlocal interactions. Math. Methods Appl. Sci. 45, 3764–3781 (2022) 14. Duan, C., Chen, W., Liu, C., Yue, X., Zhou, S.: Structure-preserving numerical methods for nonlinear Fokker-Planck equations with nonlocal interactions by an energetic variational approach. SIAM J. Sci. Comput. 43, B82–B107 (2021) 15. Elder, K., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002) 16. Elliott, C.M., Stuart, A.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993) 17. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. MRS Online Proc. Lib. (OPL) 529, 39 (1998) 18. Fu, G., Liu, S., Osher, S., Li, W.: High order computation of optimal transport, mean field planning, and mean field games. arXiv:2302.02308 (2023) 19. Fu, G., Osher, S., Li, W.: High order spatial discretization for variational time implicit schemes: Wasserstein gradient flows and reaction-diffusion systems. arXiv:2303.08950 (2023) 20. Gu, Y., Shen, J.: Bound preserving and energy dissipative schemes for porous medium equation. J. Comput. Phys. 410, 109378 (2020) 21. Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6, 815–831 (1996) 22. Harker, P., Pang, J.-S.: A damped-Newton method for the linear complementarity problem. Numer. Algorithms 26(01), 265–284 (1990) 23. Hu, J., Zhang, X.: Positivity-preserving and energy-dissipative finite difference schemes for the FokkerPlanck and Keller-Segel equations. IMA J. Numer. Anal. 43, 1450–1484 (2023) 24. Jacobs, M., Lee, W., Léger, F.: The back-and-forth method for Wasserstein gradient flows. ESAIM Control Optim. Calc. Var. 27, 28 (2021) 25. Jacobs, M., Léger, F.: A fast approach to optimal transport: the back-and-forth method. Numer. Math. 146, 513–544 (2020) 26. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998) 27. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970) 28. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971) 29. Leclerc, H., Mérigot, Q., Santambrogio, F., Stra, F.: Lagrangian discretization of crowd motion and linear diffusion. SIAM J. Numer. Anal. 58, 2093–2118 (2020) 30. Leslie, F.M.: Theory of flow phenomena in liquid crystals. In: Advances in Liquid Crystals, vol. 4, pp. 1–81. Elsevier, London (1979) 31. Li, W., Lee, W., Osher, S.: Computational mean-field information dynamics associated with reactiondiffusion equations. J. Comput. Phys. 466, 111409 (2022) 32. Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953) 33. Peletier, M.A.: Variational modelling: energies, gradient flows, and large deviations. arXiv:1402.1990 (2014) 34. Peyré, G.: Entropic approximation of Wasserstein gradient flows. SIAM J. Imaging Sci. 8, 2323–2351 (2015) 35. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012) 36. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018) 37. Shen, J., Xu, J.: Unconditionally bound preserving and energy dissipative schemes for a class of KellerSegel equations. SIAM J. Numer. Anal. 58, 1674–1695 (2020) 38. Shen, J., Xu, J.: Unconditionally positivity preserving and energy dissipative schemes for Poisson-NernstPlanck equations. Numer. Math. 148, 671–697 (2021) 39. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018) 40. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019) 41. Sznitman, A.-S.: Topics in propagation of chaos. Lect. Notes Math. 1991, 165–251 (1991) 42. Vázquez, J.L.: An introduction to the mathematical theory of the porous medium equation. In: Shape Optimization and Free Boundaries, pp. 347–389. Springer, London (1992) 43. Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford University Press, Oxford (2007) 44. Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Soc., London (2021) 45. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016) 46. Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004) 47. Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110, 279–300 (2017) |