[1] Akhbari, M., Shamsollahi, M.B., Sayadi, O., Armoundas, A.A., Jutten, C.: ECG segmentation and fiducial point extraction using multi hidden Markov model. Comput. Biol. Med. 79, 21-29 (2016) [2] Curtin, A.E., Burns, K.V., Bank, A.J., Netoff, T.I.: QRS complex detection and measurement algorithms for multichannel ECGs in cardiac resynchronization therapy patients. IEEE J. Transl. Eng. Health. Med. 6, 1-11 (2018) [3] Fujita, N., Sato, A., Kawarasaki, M.: Performance study of wavelet-based ECG analysis for ST-segment detection. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), pp. 430-434 (2015) [4] Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P.C., Mark, R., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215-e220 (2000) [5] Goovaerts, G., Padhy, S., Vandenberk, B., Varon, C., Willems, R., Van Huffel, S.: A machine-learning approach for detection and quantification of QRS fragmentation. IEEE J. Biomed. Health. Inform. 23(5), 1980-1989 (2019) [6] Hadjem, M., Nalït-Abdesselam, F., Khokhar, A.: ST-segment and T-wave anomalies prediction in an ECG data using RUSBoost. In: 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1-6 (2016) [7] Hallac, D., Vare, S., Boyd, S., Leskovec, J.: Toeplitz inverse covariance-based clustering of multivariate time series data. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 2017, pp. 215-223 (2017) [8] Hu, J.-L., Bao, S.-D.: An approach to QRS complex detection based on multiscale mathematical morphology. In: 2010 3rd International Conference on Biomedical Engineering and Informatics, vol. 2, pp. 725-729 (2010) [9] Laguna P., Mark R.G., Goldberger A.L., Moody G.B.: A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. Computers in Cardiology 24, 673-676 (1997) [10] Makowski, D., Pham, T., Lau, Z.J., Brammer, J., Lespinasse, F., Pham, H., Schölzel, C., Chen, S.: NeuroKit2: a Python toolbox for neurophysiological signal processing. Behav. Res. Methods 53, 1689-1696 (2021) [11] Di Marco, L.Y., Chiari, L.: A wavelet-based ECG delineation algorithm for 32-bit integer online processing. Biomed. Eng. Online 10, 23-23 (2011) [12] Martis, R.J., Chakraborty, C., Ray, A.K.: A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern. Recognit. 42(11), 2979-2988 (2009) [13] McSharry, P.E., Clifford, G.D., Tarassenko, L., Smith, L.A.: A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50(3), 289-294 (2003) [14] Mneimneh, M.A., Povinelli, R.J.: RPS/GMM approach toward the localization of myocardial infarction. In: 2007 Computers in Cardiology, pp. 185-188 (2007) [15] Sehirli, E., Turan, M.K.: A novel method for segmentation of QRS complex on ECG signals and classify cardiovascular diseases via a hybrid model based on machine learning. Int. J. Intell. Syst. Appl. Eng. 9(1), 12-21 (2021) [16] Spath, H.: Clusterwise linear regression. Computing 22, 367-373 (1979) [17] Suk, H.W., Hwang, H.: Regularized fuzzy clusterwise ridge regression. Adv. Data Anal. Classif. 4, 35-51 (2010) [18] Terzı, M.B., Arikan, O.: Detection of myocardial ischaemia by using ECG, artificial neural network and Gaussian mixture model. In: 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4 (2020) [19] Thomas, J., Rose, C., Charpillet, F.: A support system for ECG segmentation based on hidden Markov models. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3228-3231 (2007) [20] Umer, M., Bhatti, B.A., Tariq, M.H., Zia-ul-Hassan, M., Khan, M.Y., Zaidi, T.: Electrocardiogram feature extraction and pattern recognition using a novel windowing algorithm. Adv. Biosci. Biotechnol. 05, 886-894 (2014) [21] Xiao, R., Xu, Y., Pelter, M.M., Fidler, R.L., Badilini, F., Mortara, D.W., Hu, X.: Monitoring significant ST changes through deep learning. J. Electrocardiol. 51(6S), 78-82 (2018) [22] Xu, M., Wei, S., Qin, X., Zhang, Y., Liu, C.: Rule-based method for morphological classification of ST segment in ECG signals. J. Med. Biol. Eng. 35, 816-823 (2015) |