1. Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85(2), 257–283 (1989) 2. Brown, D.L., Cortez, R.,Minion,M.L.: Accurate projectionmethodsfor the incompressible Navier-Stokes equations. J. Comput. Phys. 168(2), 464–499 (2001) 3. Ito, K., Li, Z., Wan, X.: Pressure jump conditions for Stokes equations with discontinuous viscosity in 2D and 3D. Methods Appl. Anal. 13, 199–214 (2006) 4. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985) 5. Lai, M.C., Li, Z.: A remark on jump conditions for the three-dimensional Navier-Stokes equations involving an immersed moving membrane. Appl. Math. Lett. 14(2), 149–154 (2001) 6. Landau L.D., Lifshitz E.M.: Fluid Mechanics, Course of Theoretical Physics, vol 6, 2nd ed. Pergamon Press, Oxford (1987) 7. LeVeque, R.J., Li, Z.: The immersed interfacemethod for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994) 8. LeVeque, R.J., Li, Z.: Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18(3), 709–735 (1997) 9. Li, Y., Williams, S.A., Layton, A.T.: A hybrid immersed interface method for driven Stokes flow in an elastic tube. Numer. Math. Theory Methods Appl. 6(4), 600–616 (2013) 10. Li, Z., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2006) 11. Li, Z., Lai, M.C.: The immersed interface method for the Navier-Stokes equations with singular forces. J. Comput. Phys. 171(2), 822–842 (2001) 12. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005) 13. Neustupa, J., Pokorný, M.: Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component. In: Proceedings of Partial Differential Equations and Applications (Olomouc, 1999), pp. 469–481 (2001) 14. Nganguia, H., Young, Y.N., Layton, A.T., Hu, W.-F., Lai, M.-C.: An immersed interface method for axisymmetric electrohydrodynamic simulations in Stokes flow. Commun. Comput. Phys. 18(2), 429–449 (2015) 15. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002) 16. Ruiz, J., Chen, J., Li, Z.: The IIM in polar coordinates and its application to electro capacitance tomography problems. Numer. Algorithms 57(3), 405–423 (2011) 17. Ruiz, J., Li, Z.: The immersed interface method for axis-symmetric problems and application to the Hele-Shaw flow. Appl. Math. Comput. 264, 179–197 (2015) 18. Schumann, U., Sweet, R.: A direct method for the solution of Poisson’s equation with Neumann boundary conditions on a staggered grid of arbitrary size. J. Comput. Phys. 20, 171–182 (1976) 19. Swarztrauber, P.: A direct method for the discrete solution of separable elliptic equations. SIAM J. Numer. Anal. 11, 1136–1150 (1974) 20. Swarztrauber, P., Sweet, R.: Efficient FORTRAN subprograms for the solution of elliptic equations. Technical Report TN/IA-109, National Center for Atmospheric Research (1975) 21. Sweet, R.: A cyclic reduction algorithm for solving block tridiagonal systems of arbitrary dimensions. SIAM J. Numer. Anal. 14, 706–720 (1977) 22. Van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7(3), 870–891 (1986) 23. Zeeuw, P.D.: Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J. Comput. Appl. Math. 33(1), 1–27 (1990) |