1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003) 2. Ahmed, N., Barrenechea, G.R., Burman, E., Guzman, J., Linke, A., Merdon, C.: A pressure-robust discretization of Oseen’s equation using stabilization in the vorticity equation. SIAM. J. Numer. Anal. 59, 2746–2774 (2021) 3. Beirão da Veiga, L., Dassi, F., Vacca, G.: Vorticity-stabilized virtual elements for the Oseen equation. Math. Models Methods Appl. Sci. 31, 3009–3052 (2021) 4. Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43, 2544–2566 (2006) 5. Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196, 853–866 (2007) 6. Brooks, A.N., Hughes, T.J.R.: Streaming upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Math. Appl. 32, 199–259 (1982) 7. Burman, E., Fernández, M.A., Hansbo, P.: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44, 1248–1274 (2006) 8. Chen, G., Feng, M., Xie, X.: Robust globally divergence-free weak Galerkinmethods for Stokes equations. J. Comput. Math. 34, 549–572 (2016) 9. Chen, X., Li, Y.: Superconvergent pseudostress-velocity finite element methods for the Oseen equations. J. Sci. Comput. 92, 17 (2022) 10. Christie, I., Griffiths, D.F., Mitchell, A.R., Zienkiewicz, O.C.: Finite element methods for second order differential equations with significant first derivatives. Internat. J. Numer. Methods Eng. 10, 1389–1396 (1976) 11. Douglas, J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982) 12. Franca, L.P., John, V., Matthies, G., Tobiska, L.: An inf-sup stable and residual-free bubble element for the Oseen equations. SIAM J. Numer. Anal. 45, 2392–2407 (2007) 13. Gao, F., Zhang, S., Zhu, P.: Modified weak Galerkin method with weakly imposed boundary condition for convection-dominated diffusion equations. Appl. Numer. Math. 157, 490–504 (2020) 14. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations: Theory and Algorithms. Springer Verlag, Berlin (1986) 15. Li, Y., Feng, M., Luo, Y.: A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes. Adv. Comput. Math. 48, 30 (2022) 16. Lin, R., Ye, X., Zhang, S., Zhu, P.: A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems. SIAM J. Numer. Anal. 56, 1482–1497 (2018) 17. Liu, X., Li, J., Chen, Z.: A weak Galerkin finite element method for the Oseen equations. Adv. Comput. Math. 42, 1473–1490 (2016) 18. Matthies, G., Tobiska, L.: Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem. IMA J. Numer. Anal. 35, 239–269 (2015) 19. Mu, L., Liu, X., Zhang, S.: A stabilizer-free, pressure-robust, and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh. SIAM J. Sci. Comput. 43, A2614–A2637 (2021) 20. Park, E.J., Seo, B.: An upstream pseudostress-velocity mixed formulation for the Oseen equations. Bull. Korean Math. Soc. 51, 267–285 (2014) 21. Qi, W., Seshaiyer, P., Wang, J.: A generalized weak Galerkin method for Oseen equation. J. Comput. Appl. Math. 440, 115511 (2023) 22. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83, 2101–2126 (2014) 23. Wang, J., Ye, X.: A weak Galerkin finite element method for the Stokes equations. Adv. Comput. Math. 42, 155–174 (2016) 24. Zhang, J., Zhang, K., Li, J., Wang, X.: A weak Galerkin finite element method for the Navier-Stokes equations. Commun. Comput. Phys 23, 706–746 (2018) 25. Zhao, W.: Higher order weak Galerkin methods for the Navier-Stokes equations with large Reynolds number. Numer. Methods Partial Differential Equations 38, 1967–1992 (2022) |