[1] Belhumeour, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711-720 (1997) [2] Cai, D., He, X., Han, J.: SRDA: an efficient algorithm for large-scale discriminant analysis. IEEE Trans. Knowl. Data Eng. 20, 1-12 (2008) [3] Chung F.: Spectral Graph Theory. AMS, Providence (1997) [4] Dai, D., Uen, P.: Face recognition by regularized discriminant analysis. IEEE Trans. Syst. Man. Cybern. Part B (Cybernetics) 37, 1080-1085 (2007) [5] Duda, R., Hart, P.: Pattern Classication and Scene Analysis. Wiley, New York (1973) [6] Fisher, R.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179-188 (1936) [7] Friedman, J.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84, 165-175 (1989) [8] Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Trans. Syst. Man. Cybern. Part A 38, 149-161 (2008) [9] Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013) [10] Halko, N., Martinsson, P., Tropp, J.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217-288 (2011) [11] He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using Laplacian faces. IEEE Trans. Pattern Anal. Mach. Intell. 27, 328-340 (2005) [12] Hu, L., Zhang, W.: Orthogonal neighborhood preserving discriminant analysis with patch embedding for face recognition. Pattern Recognit. 106, 107450 (2020) [13] Huang, J., Nie, F., Huang H.: Spectral rotation versus K-means in spectral clustering. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 431-437 (2013) [14] Krzanowski, W., Jonathan, P., Mcarthy, W., Thomash, M.: Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data. Appl. Stat. 44, 101-115 (1995) [15] Lu, Y., Wu, G.: Fast and incremental algorithms for exponential semi-supervised discriminant embedding. Pattern Recognit. 108, 107530 (2020) [16] Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The MIT Press, Cambridge (2012) [17] Moulin, C., Largeron, C., Ducottet, C., Gery, M., Barat, C.: Fisher linear discriminant analysis for text-image combination in multimedia information retrieval. Pattern Recognit. 47, 260-269 (2014) [18] Nie, F., Zhang, R., Li, X.: A generalized power iteration method for solving quadratic problem on the Stiefel manifold. Sci. China Inf. Sci. 60, 112101 (2017) [19] Paige, C., Saunders, M.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Tran. Math. Soft. 8, 43-71 (1982) [20] Pang, Y., Xie, J., Nie, F., Li, X.: Spectral clustering by joint spectral embedding and spectral rotation. IEEE Trans. Cybern. 50, 247-258 (2020) [21] Park, C., Park, H.: A comparison of generalized linear discriminant analysis algorithms. Pattern Recognit. 41, 1083-1097 (2008) [22] Rao, R.: The utilization of multiple measurements in problems of biological classification. J. R. Stat. Soc. 10, 159-203 (1948) [23] Sasithradevi, A., Mohamed Mansoor, R.S.: Video classification and retrieval through spatio-temporal Radon features. Pattern Recognit. 99, 107099 (2020) [24] Shi, W., Wu, G.: Perturbation analysis on PCA plus graph embedding methods and PCA plus exponential graph embedding methods. J. Comput. Appl. Math. 444, 115788 (2024) [25] Wang, F., Wang, Q., Nie, F., Li, Z., Yu, W., Wang, R.: Unsupervised linear discriminant analysis for jointly clustering and subspace learning. IEEE Trans. Knowl. Data Eng. 33, 1276-1290 (2021) [26] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2, 37-52 (1987) [27] Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 529-534 (2011) [28] Wu, G., Feng, T., Zhang, L., Yang, M.: Inexact implementation using Krylov subspace methods for large scale exponential discriminant analysis with applications to high dimensionality reduction problems. Pattern Recognit. 66, 328-341 (2017) [29] Yu, S., Shi, J.: Multiclass spectral clustering. In: Proceedings Ninth IEEE International Conference on Computer Vision. pp. 313-319 (2003) [30] Zhang, R., Nie, F., Li, X.: Self-weighted spectral clustering with parameter-free constraint. Neurocomputing 241, 164-170 (2017) [31] Zhang, X., Cheng, L., Chu, D., Liao, L., NG, M., Tan, R.: Incremental regularized least squares for dimensionality reduction of large-scale data. SIAM J. Sci. Comput. 38, B414-B439 (2016) [32] Zhang, X., Wang, L., Xiang, S., Liu, C.: Retargeted least squares regression algorithm. IEEE Trans. Neur. Netw. Learn. Syst. 26, 2206-2213 (2014) [33] Zhao, X., Guo, J., Nie, F., Chen, L., Li, Z., Zhang, H.: Joint principal component and discriminant analysis for dimensionality reduction. IEEE Trans. Neur. Netw. Learn. Sys. 31, 433-444 (2020) [34] Zhou, Z.: Machine Learning and Its Applications. Tsinghua University Press, Beijing (2006) [35] Zhu, L., Huang, D.: A Rayleigh-Ritz style method for large-scale discriminant analysis. Pattern Recogn. 47, 1698-1708 (2014) |