[1] Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Guyon, G., Dror, G., Lemaire, V., Taylor, G., Silver, D. (eds.) Proceedings of ICML Workshop on Unsupervised and Transfer Learning. Proceedings of Machine Learning Research, pp. 37-49. PMLR, Bellevue (2012) [2] Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375-393 (2000). https://doi.org/10.1007/s002110050002 [3] Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Springer, New York (2000). https://doi.org/10.1007/978-1-4757-9859-3 [4] Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932-3937 (2016). https://doi.org/10.1073/pnas.1517384113 [5] Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math. 123(1/2), 423-446 (2000). https://doi.org/10.1016/s0377-0427(00)00414-3 [6] Chalvidal, M., Ricci, M., VanRullen, R., Serre, T.: Go with the flow: adaptive control for neural ODEs. arXiv: 2006.09545 (2020). https://doi.org/10.48550/arXiv.2006.09545 [7] Chang, B., Chen, M., Haber, E., Chi, E.H.: Antisymmetric RNN: a dynamical system view on recurrent neural networks. arXiv: 1902.09689 (2019). https://doi.org/10.48550/arXiv.1902.09689 [8] Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. Adv. Neural. Inf. Process. Syst. 31, 07366 (2018). https://doi.org/10.48550/arXiv.1806 [9] Finlay, C., Jacobsen, J.-H., Nurbekyan, L., Oberman, A.: How to train your neural ODE: the world of Jacobian and kinetic regularization. In: International Conference on Machine Learning, pp. 3154-3164. PMLR, Cham (2020) [10] Garsdal, M., Søgaard, V., Sørensen, S.: Generative time series models using neural ODE in variational autoencoders. arXiv: 2201.04630 (2022). https://doi.org/10.48550/arXiv.2201.04630 [11] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, London (2016). https://doi.org/10.1007/s10710-017-9314-z [12] Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.: FFJORD: free-form continuous dynamics for scalable reversible generative models. arXiv: 1810.01367 (2018). https://doi.org/10.48550/arXiv.1810.01367 [13] Greydanus, S., Dzamba, M., Yosinski, J.: Hamiltonian neural networks. In: NIPS'19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 15379-15389. ACM (2019). https://doi.org/10.48550/arXiv.1906.01563 [14] Haber, E., Ruthotto, L.: Stable architectures for deep neural networks. Inverse Prob. 34, 014004 (2017). https://doi.org/10.1088/1361-6420/aa9a90 [15] Heinonen, M., Yildiz, C., Mannerström, H., Intosalmi, J., Lähdesmäki, H.: Learning unknown ODE models with Gaussian processes. In: International Conference on Machine Learning, pp. 1959-1968. PMLR, Cham (2018). https://doi.org/10.1109/cdc45484.2021.9683426 [16] Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933). https://doi.org/10.1037/h0071325 [17] Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv: 1312.6114 (2013). https://doi.org/10.48550/arXiv.1312.6114 [18] Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019). https://doi.org/10.1016/j.jcp.2019.108925 [19] McInnes, L., Healy, J., Melville, J.: Umap: uniform manifold approximation and projection for dimension reduction. arXiv: 1802.03426 (2018). https://doi.org/10.48550/arXiv.1802.03426 [20] Santambrogio, F.: Optimal transport for applied mathematicians: calculus of variations, PDEs, and modeling. In: Progress in Nonlinear Differential Equations and Their Applications. Birkäuser, New York (2015). https://doi.org/10.1007/978-3-319-20828-2 [21] Sideris, T.C.: Ordinary Differential Equations and Dynamical Systems. Springer, Cham (2013). https://doi.org/10.2991/978-94-6239-021-8 [22] Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(86), 2579-2605 (2008) [23] Xia, H., Suliafu, V., Ji, H., Nguyen, T., Bertozzi, A., Osher, S., Wang, B.: Heavy ball neural ordinary differential equations. In: Thirty-Fifth Conference on Neural Information Processing Systems (NeurIPS 2021), arXiv: 2110.04840 (2021). https://doi.org/10.48550/arXiv.2110.04840 [24] Yoon, R., Bhat, H.S., Osting, B.: A nonautonomous equation discovery method for time signal classification. SIAM J. Appl. Dyn. Syst. 21(1), 33-59 (2022). https://doi.org/10.1137/21m1405216 [25] Zhang, L., Schaeffer, H.: On the convergence of the SINDy algorithm. Multiscale Model. Simul. 17(3), 948-972 (2019). https://doi.org/10.1137/18m1189828 [26] Zhong, Y.D., Dey, B., Chakraborty, A.: Symplectic ODE-net: learning Hamiltonian dynamics with control. arXiv: 1909.12077 (2019). https://doi.org/10.48550/arXiv.1909.12077 |