1. Alikhanov, A.A.:A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424-438 (2015) 2. Barkai, E., Metzler, R., Klafter, J.:From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61(1), 132 (2000) 3. Chen, H., Stynes, M.:Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624-647 (2019) 4. Chen, S., Shen, J., Zhang, Z., Zhou, Z.:A spectrally accurate approximation to subdiffusion equations using the log orthogonal functions. SIAM J. Sci. Comput. 42(2), A849-A877 (2020) 5. Dimitrov, Y.:Numerical approximations for fractional differential equations. arXiv:1311.3935 (2013) 6. Gao, G.H., Sun, H.W., Sun, Z.Z.:Stability and convergence of finite difference schemes for a class of timefractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510-528 (2015) 7. Golding, I., Cox, E.C.:Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96(9), 098102 (2006) 8. Jin, B., Lazarov, R., Zhou, Z.:Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445-466 (2013) 9. Jin, B., Li, B., Zhou, Z.:Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129-A3152 (2017) 10. Jin, B., Li, B., Zhou, Z.:An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518-541 (2018) 11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.:Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, London (2006) 12. Kopteva, N.:Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88(319), 2135-2155 (2019) 13. Li, C., Zeng, F.:Numerical Methods for Fractional Calculus, vol. 24. CRC Press, New York (2015) 14. Li, D., Sun, W., Wu, C.:A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theor. Methods Appl. 14(2), 355-376 (2021) 15. Liao, H.L.:A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. Commun. Comput. Phys. 30(2), 567-601 (2021) 16. Liao, H.L., Li, D., Zhang, J.:Sharp error estimate of the nonuniform L1 formula for linear reactionsubdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112-1133 (2018) 17. Lin, Y., Xu, C.:Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533-1552 (2007) 18. Liu, Y., Yin, B., Li, H., Zhang, Z.:The unified theory of shifted convolution quadrature for fractional calculus. J. Sci. Comput. 89(1), 18 (2021) 19. Lubich, C.:Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704-719 (1986) 20. Magin, R.:Fractional calculus in bioengineering, part 1. Crit. Rev. Bioeng. 32(1), 33 (2004) 21. Raberto, M., Scalas, E., Mainardi, F.:Waiting-times and returns in high-frequency financial data:an empirical study. Phys. A 314(1-/2/3/4), 749-755 (2002) 22. Sakamoto, K., Yamamoto, M.:Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426-447 (2011) 23. Shi, J., Chen, M., Yan, Y., Cao, J.:Correction of high-order Lk approximation for subdiffusion. J. Sci. Comput. 93(1), 31 (2022) 24. Stynes, M.:Too much regularity may force too much uniqueness. Frac. Calc. Appl. Anal. 19(6), 1554- 1562 (2016) 25. Stynes, M., O'Riordan, E., Gracia, J.L.:Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057-1079 (2017) 26. Sun, Z.Z., Wu, X.:A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193-209 (2006) 27. Wang, J., Wang, J., Yin, L.:A single-step correction scheme of Crank-Nicolson convolution quadrature for the subdiffusion equation. J. Sci. Comput. 87(1), 26 (2021) 28. Wang, Y., Yan, Y., Yan, Y., Pani, A.K.:Higher order time stepping methods for subdiffusion problems based on weighted and shifted Grünwald-Letnikov formulae with nonsmooth data. J. Sci. Comput. 83(3), 40 (2020) 29. Yan, Y., Khan, M., Ford, N.J.:An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210-227 (2018) 30. Yin, B., Liu, Y., Li, H.:Necessity of introducing non-integer shifted parameters by constructing high accuracy finite difference algorithms for a two-sided space-fractional advection-diffusion model. Appl. Math. Lett. 105, 106347 (2020) 31. Yin, B., Liu, Y., Li, H., Zhang, Z.:Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes. BIT 62(2), 631-666 (2022) 32. Zaslavsky, G.M.:Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371(6), 461-580 (2002) 33. Zeng, F., Li, C., Liu, F., Turner, I.:Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55-A78 (2015) |