[1] Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2013) [2] Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York, London (1963) [3] Cen, D., Vong, S.: The tracking of derivative discontinuities for delay fractional equations based on fitted $ \rm{L} $1 method. Comput. Methods Appl. Math. 23(3), 591–601 (2023) [4] Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley Classics Library, vol. II. John Wiley & Sons Inc., New York (1989) [5] Gracia, J.L., O’Riordan, E., Stynes, M.: A fitted scheme for a Caputo initial-boundary value problem. J. Sci. Comput. 76(1), 583–609 (2018) [6] Liao, H.-L., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019) [7] Morgado, M.L., Ford, N.J., Lima, P.M.: Analysis and numerical methods for fractional differential equations with delay. J. Comput. Appl. Math. 252, 159–168 (2013) [8] Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press Inc, San Diego, CA (1999) [9] Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017) [10] Sun, Z.-Z., Gao, G.-H.: Fractional Differential Equations: Finite Difference Methods. De Gruyter, Berlin (2020) [11] Tan, T., Bu, W.-P., Xiao, A.-G.: L1 method on nonuniform meshes for linear time-fractional diffusion equations with constant time delay. J. Sci. Comput. 92(3), 26 (2022) [12] Yin, B., Liu, Y., Li, H.: Necessity of introducing non-integer shifted parameters by constructing high accuracy finite difference algorithms for a two-sided space-fractional advection-diffusion model. Appl. Math. Lett. 105, 106347 (2020) |