[1] Abgrall, R., Congedo, P.M., Geraci, G.: Towards a unified multiresolution scheme for treating discontinuities in differential equations with uncertainties. Math. Comput. Simul. 139, 1-22 (2017) [2] Aràndiga, F., Chiavassa, G., Donat, R.: Applications of Harten’s framework for multiresolution: from conservation laws to image compression. In: Barth, T.J., Chan, T., Haimes, R. (eds.) Multiscale and Multiresolution Methods, pp. 281-296. Springer, Berlin (2002) [3] Aràndiga, F., Donat, R., Santágueda, M.: The PCHIP subdivision scheme. Appl. Math. Comput. 272, 28-40 (2016) [4] Baeza, A., Mulet, P.: Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations. Int. J. Numer. Methods Fluids 52(4), 455-471 (2006) [5] Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64-84 (1989) [6] Bermúdez, A., Vázquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23, 1049-1071 (1994) [7] Bihari, B.L., Harten, A.: Multiresolution schemes for the numerical solution of 2-D conservation laws I. SIAM J. Sci. Comput. 18(2), 315-354 (1997) [8] Boiron, O., Chiavassa, G., Donat, R.: A high-resolution penalization method for large Mach number flows in the presence of obstacles. Comput. Fluids 38(3), 703-714 (2009) [9] Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes. Frontiers in Mathematics. Birkhauser, Basel (2004) [10] Bürger, R., Ruiz-Baier, R., Schneider, K.: Adaptive multiresolution methods for the simulation of waves in excitable media. J. Sci. Comput. 43, 261-290 (2010) [11] Cao, Y., Kurganov, A., Liu, Y., Xin, R.: Flux globalization based well-balanced path-conservative central-upwind schemes for shallow water models. J. Sci. Comput. 92(2), 69 (2022) [12] Caselles, V., Donat, R., Haro, G.: Flux gradient and source term balancing for certain high resolution shock capturing schemes. Comput. Fluids 38, 16-36 (2009) [13] Castro, M.J., Fernández-Nieto, E.D., Ferreriro, A.M., García-Rodríguez, J.A., Parés, C.: High order extensions of Roe schemes for two-dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39, 67-114 (2009) [14] Castro, M.J., Morales de Luna, T., Parés, C.: Well-balanced schemes and path-conservative numerical methods. In: Du, Q., Glowinsky, R., Hintermüller, M., Süly, E. (eds.) Handbook of Numerical Methods for Hyperbolic Problems, vol. 18, pp. 131-175. Elsevier, Amsterdam (2017) [15] Castro, M.J., Parés, C.: Well-balanced high-order finite volume methods for systems of balance laws. J. Sci. Comput. 82, 48 (2020) [16] Chiavassa, G., Donat, R.: Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput. 23(3), 805-823 (2001) [17] Chiavassa, G., Donat, R., Martínez-Gavara, A.: Cost-effective multiresolution schemes for shock computations. In: ESAIM. Proceedings, vol. 29, pp. 8-27 (2009) [18] De Boor, C.: A Practical Guide to Splines. Springer, Berlin (2001) [19] De la Asunción, M., Castro, M.J.: Simulation of tsunamis generated by landslides using adaptive mesh refinement on GPU. J. Comput. Phys. 345, 91-110 (2017) [20] Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constr. Approx. 5, 49-68 (1989) [21] Donat, R., Martí, M.C., Martínez-Gavara, A., Mulet, P.: Well-balanced adaptive mesh refinement for shallow water flows. J. Comput. Phys. 257, 937-953 (2014) [22] Donat, R., Martínez-Gavara, A.: Hybrid second order schemes for scalar balance laws. J. Sci. Comput. 48, 52-69 (2011) [23] Dumbser, M., Hidalgo, A., Zanotti, O.: High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 268, 359-387 (2014) [24] Dyn, N.: Subdivision schemes in computer-aided geometric design. In: Advances in Numerical Analysis, II, Wavelets, Subdivision Algorithms and Radial Basis Functions. Clarendon Press, Oxford, 1992. ll. Binary Subdivision Schemes, vol. 621, pp. 36-104 (1992) [25] Fritsch, F.N., Butland, J.: A method for constructing local monotone piecewise cubic interpolants. SIAM J. Sci. Stat. Comput. 5(2), 200-304 (1984) [26] George, D.L.: Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: application to the Malpasset dam-break flood (France, 1959). Int. J. Numer. Methods Fluids 66(8), 1000-1018 (2011) [27] Goutal, N., Maurel, F.: Proceedings of the 2nd Workshop on Dam Break Wave Simulation. EDF-DER Report HE-43/97/016/B, pp. 42-45 (1997) [28] Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33(1), 1-16 (1996) [29] Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305-1342 (1995) [30] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 131(1), 3-47 (1987) [31] LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146(1), 346-365 (1998) [32] Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656-672 (2000) [33] Martínez-Gavara, A., Donat, R.: A hybrid second order scheme for shallow water flows. J. Sci. Comput. 48, 241-257 (2011) [34] Rault, A., Chiavassa, G., Donat, R.: Shock-vortex interactions at high Mach numbers. J. Sci. Comput. 19, 347-371 (2003) [35] Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes II. J. Comput. Phys. 83(1), 32-78 (1989) [36] Sjögreen, B.: Numerical experiments with the multiresolution scheme for the compressible Euler equations. J. Comput. Phys. 117, 251-261 (1995) [37] Vázquez-Cendón, M.E.: Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148, 497-526 (1999) [38] Xing, Y., Shu, C.-W.: A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1(1), 100-134 (2006) |