Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (4): 2455-2474.doi: 10.1007/s42967-023-00252-2
• ORIGINAL PAPERS • Previous Articles Next Articles
Aissa Guesmia
Received:
2022-01-27
Revised:
2023-01-10
Accepted:
2023-01-11
Published:
2024-12-20
Contact:
Aissa Guesmia,E-mail:aissa.guesmia@univ-lorraine.fr
E-mail:aissa.guesmia@univ-lorraine.fr
Aissa Guesmia. On the L2(ℝ)-Norm Decay Estimates for Two Cauchy Systems of Coupled Wave Equations Under Frictional Dampings[J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2455-2474.
1. Afilal, M., Soufyane, A., de Lima Santos, M.: Piezoelectric beams with magnetic effect and localized damping. Mathematical Control and Related Fields 13(1), 250-264 (2023). https:// doi. org/ 10. 3934/mcrf. 20210 56. 2. Alabau-Boussouira, F., Cannarsa, P., Komornik, V.: Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Equ. 2, 127-150 (2002) 3. Alabau-Boussouira, F., Wang, Z., Yu, L.: A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities. ESAIM: COCV 23(2), 721749 (2017) 4. Akil, M.: Stability of pizoelectric beam with magnetic effect under (Colman or Pipkin)-Gurtin thermal law. arXiv: 2204. 00283 (2022) 5. Akil, M., Badawi, H., Nicaise, S., Regnier, V.: Stabilization of coupled wave equations with viscous damping on cylindrical and non-regular domains: cases without the geometric control condition. Mediterr. J. Math. 19(6), 1-22 (2022) 6. Akil, M., Badawi, H., Nicaise, S., Wehbe, A.: Stability results of coupled wave models with locally memory in a past history framework via non smooth coefficients on the interface. Math. Methods Appl. Sci. 44(8), 6950-6981 (2021). https:// doi. org/ 10. 1002/ mma. 7235 7. Akil, M., Issa, I., Wehbe, A.: A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface. SeMA (2022). https:// doi. org/ 10. 1007/s40324- 022- 00297-y 8. Almeida, R.G.C., Santos, M.L.: Lack of exponential decay of a coupled system of wave equations with memory. Nonlinear Anal. 12, 1023-1032 (2011) 9. Almeida Junior, D.S., Santos, M.L., Munoz Rivera, J.E.: Stability to weakly dissipative Timoshenko systems. Math. Methods Appl. Sci. 36(14), 1965-1976 (2013) 10. Apalara, T., Messaoudi, S., Keddi, A.: On the decay rates of Timoshenko system with second sound.Math. Methods Appl. Sci. 39(10), 2671-2684 (2016) 11. Banks, H.T., Smith, R.C., Wang, Y.: The modeling of piezoceramic patch interactions with shells,plates and beams. Q. Appl. Math. LIII(2), 353-381 (1995) 12. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Guesmia, A.: Weak stability for coupled wave and/or Petrovsky systems with complementary frictional damping and infinite memory. J. Differential Equations 259, 7540-7577 (2015) 13. Chen, G., Krantz, S.G., Russell, D.L., Wayne, C.E., West, H.H., Coleman, M.P.: Analysis, designs and behavior of dissipative joints for coupled beams. SIAM J. Appl. Math. 49(6), 1665-1693 (1989) 14. Chen, G., Wang, H.: Pointwise stabilization for coupled quasilinear and linear wave equations. Lect.Notes Control Inf. Sci. 102, 40-63 (1987) 15. Cordeiro, S., Lobato, R., Raposo, C.: Optimal polynomial decay for a coupled system of wave with past history. Open J. Math. Anal. 4, 49-59 (2020) 16. Dell’Oro, F., Pata, V.: On the stability of Timoshenko systems with Gurtin-Pipkin thermal law. J. Differential Equations 257(2), 523-548 (2014) 17. Gao, Y., Liang, J., Xiao, T.J.: Observability inequality and decay rate for wave equations with nonlinear boundary conditions. Electron. J. Differential Equations 2017(161), 1-12 (2017) 18. Gao, Y., Liang, J., Xiao, T.J.: A new method to obtain uniform decay rates for multidimensional wave equations with nonlinear acoustic boundary conditions. SIAM J. Control Optim. 56(2), 1303-1320(2018) 19. Gerbi, S., Kassem, C., Mortada, A., Wehbe, A.: Exact controllability and stabilization of locally coupled wave equations: theoretical results. Zeit. Anal. Anwend. 40, 67-96 (2021) 20. Guesmia, A.: Quelques résultats de stabilisation indirecte des systèmes couplés non dissipatifs.Bull. Belg. Math. Soc. 15, 479-497 (2008) 21. Guesmia, A.: Sur des inégalités intégrales et applications à la stabilité de quelques systèmes distribués non dissipatifs. Diss. Math. 506, 1-52 (2015) 22. Guesmia, A.: Asymptotic behavior for coupled abstract evolution equations with one infinite memory. Appl. Anal. 94, 184-217 (2015) 23. Guesmia, A.: On the stability of a laminated Timoshenko problem with interfacial slip in the whole space under frictional dampings or infinite memories. Nonauton. Dyn. Syst. 7, 194-218 (2020) 24. Guesmia, A.: New decay rates for a Cauchy thermoelastic laminated Timoshenko problem with interfacial slip under Fourier or Cattaneo laws. Math. Methods Appl. Sci. 45, 3439-3462 (2022) 25. Guesmia, A.: Stability and instability results for Cauchy laminated Timoshenko type systems with interfacial slip and a heat conduction of Gurtin-Pipkin’s law. ZAMP 73(1), 1-25 (2022) 26. Guesmia, A.: Some Lq(ℝ)-norm decay estimates (q ∈ [1, +∞]) for two Cauchy systems of type Rao-Nakra sandwich beam with a frictional damping or an infinite memory. J. Appl. Anal. Comput.12(6), 2511-2540 (2022) 27. Guesmia, A., Messaoudi, S.: General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping. Math. Methods Appl. Sci. 32(16), 2102-2122 (2009) 28. Guesmia, A., Messaoudi, S., Soufyane, A.: Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems. Electron. J. Differential Equations 2012(193), 1-45 (2012) 29. Hassan, J., Messaoudi, S., Zahri, M.: Existence and new general decay results for viscoelastic-type Timoshenko system. Z. Anal. Anwend. 39(2), 185-222 (2020) 30. Hayek, A., Nicaise, S., Salloum, Z., Wehbe, A.: A transmission problem of a system of weakly coupled wave equations with Kelvin-Voigt dampings and non-smooth coefficient at the interface.SeMA 77(3), 305-338 (2020) 31. Ide, K., Haramoto, K., Kawashima, S.: Decay property of regularity-loss type for dissipative Timoshenko system. Math. Model. Methods Appl. Sci. 18(5), 647-667 (2008) 32. Ide, K., Kawashima, S.: Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system. Math. Model. Methods Appl. Sci. 18(7), 1001-1025 (2008) 33. Jin, K.L., Liang, J., Xiao, T.J.: Coupled second order evolution equations with fading memory:optimal energy decay rate. J. Differential Equations 257(5), 1501-1528 (2014) 34. Jin, K.L., Liang, J., Xiao, T.J.: Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory. J. Math. Anal. Appl. 475(1), 554-575 (2019) 35. Kapitonov, B.V.: Uniform stabilization and exact controllability for a class of coupled hyperbolic systems. Comput. Appl. Math. 15, 199-212 (1996) 36. Kassem, C., Mortada, A., Toufayli, L., Wehbe, A.: Local indirect stabilization of n-d system of two coupled wave equations under geometric conditions. Comp. Rend. Math. 1195, 1-92 (2019) 37. Keddi, A., Messaoudi, S., Benaissa, A.: A general decay result for a memory-type Timoshenkothermoelasticity system with second sound. J. Math. Anal. Appl. 456, 1261-1289 (2017) 38. Khader, M., Said-Houari, B.: Decay rate of solutions to Timoshenko system with past history in unbounded domains. Appl. Math. Optim. 75, 403-428 (2017) 39. Komornik, V., Bopeng, R.: Boundary stabilization of compactly coupled wave equations. Asymptot. Anal. 14, 339-359 (1997) 40. Liu, Y., Kawashima, S.: Decay property for the Timoshenko system with memory-type dissipation.Math. Models Methods Appl. Sci. 22(2), 1150012 (2012) 41. Matos, L.P.V., Junior, D.S.A., Santos, M.L.: Polynomial decay to a class of abstract coupled systems with past history. Differ. Integral Equ. 25, 1119-1134 (2012) 42. Morris, K.A., Ozer, A.O.: Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects. SIAM J. Control Optim. 52, 2371-2398 (2014) 43. Munoz Rivera, J.E., Racke, R.: Global stability for damped Timoshenko systems. Discret. Contin.Dyn. Syst. 9, 1625-1639 (2003) 44. Munoz Rivera, J.E., Racke, R.: Timoshenko systems with indefinite damping. J. Math. Anal. Appl.341(2), 1068-1083 (2008) 45. Najafi, M.: Study of exponential stability of coupled wave systems via distributed stabilizer. Int. J.Math. Math. Sci. 28, 479-491 (2001) 46. Racke, R., Said-Houari, B.: Decay rates and global existence for semilinear dissipative Timoshenko systems. Q. Appl. Math. 71(2), 229-266 (2013) 47. Ramos, J.A., Goncalves, S.L., Correa Neto, S.: Exponential stability and numerical treatment for piezoelectric beams with magnetic effect. ESAIM: M2AN 52(1), 255-274 (2018) 48. Raposo, C.A., Ferreira, J., Santos, M.L., Castro, M.N.O.: Exponential stability for the Timoshenko system with two week dampings. Appl. Math. Lett. 18, 535-541 (2005) 49. Russel, D.L.: A general framework for the study of indirect damping mechanisms in elastic systems. J.Math. Anal. Appl. 173, 339-358 (1993) 50. Said-Houari, B., Kasimov, A.: Decay property of Timoshenko system in thermoelasticity. Math.Model. Methods Appl. Sci. 35(3), 314-333 (2012) 51. Said-Houari, B., Rahali, R.: Asymptotic behavior of the solution of the Cauchy problem for the Timoshenko system in the thermoelasticity of type III. Evol. Equ. Control Theory 2(2), 423-440(2013) 52. Soufyane, A., Afilal, M., Santos, M.L.: Energy decay for a weakly nonlinear damped piezoelectric beams with magnetic effects and a nonlinear delay term. Z. Angew. Math. Phys. 72(4), 1-22 (2021) 53. Soufyane, A., Wehbe, A.: Uniform stabilization for the Timoshenko beam by a locally distributed damping. Electron. J. Differential Equations 29, 1-14 (2003) 54. Tebou, L.: Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields 2(1), 45-60 (2012) 55. Wehbe, A., Issa, I., Akil, M.: Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients. Acta Appl. Math. 171(1), 1-46 (2021) |
[1] | Xuechun Liu, Haijin Wang, Jue Yan, Xinghui Zhong. Superconvergence of Direct Discontinuous Galerkin Methods: Eigen-structure Analysis Based on Fourier Approach [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 257-278. |
[2] | Tingting Li, Jianfang Lu, Pengde Wang. Stability Analysis of Inverse Lax-Wendroff Procedure for High order Compact Finite Difference Schemes [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 142-189. |
[3] | Haijin Wang, Qiang Zhang. The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Difusion Problems [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 271-292. |
[4] | Yuqing Miao, Jue Yan, Xinghui Zhong. Superconvergence Study of the Direct Discontinuous Galerkin Method and Its Variations for Difusion Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 180-204. |
[5] | Shan Shi, Zhenlai Han. Oscillation of Second-Order Half-Linear Neutral Advanced Differential Equations [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 497-508. |
[6] | Xuping Wang, Zhizhong Sun. A Compact Difference Scheme for Multi-point Boundary Value Problems of Heat Equations [J]. Communications on Applied Mathematics and Computation, 2019, 1(4): 545-563. |
[7] | Tao Sun, Tian-jun Wang. Multi-Domain Decomposition Pseudospectral Method for Nonlinear Fokker-Planck Equations [J]. Communications on Applied Mathematics and Computation, 2019, 1(2): 231-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||