1. Amrouche, C., Girault, V.:Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czech. Math. J. 44, 109-140 (1994) 2. Badia, S., Codina, R.:Unifed stabilized fnite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal. 47, 1971-2000 (2009) 3. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.:Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199-214 (2013) 4. Burman, E., Hansbo, P.:Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem. Numer. Methods Partial Difer. Equ. 21, 986-997 (2005) 5. Burman, E., Hansbo, P.:A unifed stabilized method for Stokes' and Darcy's equations. J. Comput. Appl. Math. 198, 35-51 (2007) 6. Caocao, S., Yotov, I.:A Banach space mixed formulation for the unsteady Brinkman-Forchheimer equations. IMA J. Numer. Anal. (2020). https://doi.org/10.1093/imanum/draa035 7. Celebi, A.O., Kalantarov, V.K., Uğurlu, D.:On continuous dependence on coefcients of the Brinkman-Forchheimer equation. Appl. Math. Lett. 19, 801-807 (2006) 8. Chung, E.T., Ciarlet Jr., P., Yu, T.:Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell's equations on Cartesian grids. J. Comput. Phys. 235, 14-31 (2013) 9. Chung, E.T., Engquist, B.:Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44, 2131-2158 (2006) 10. Chung, E.T., Engquist, B.:Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820-3848 (2009) 11. Chung, E.T., Park, E.-J., Zhao, L.:Guaranteed a posteriori error estimates for a staggered discontinuous Galerkin method. J. Sci. Comput. 75, 1079-1101 (2018) 12. Chung, E.T., Qiu, W.:Analysis of an SDG method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 55, 543-569 (2017) 13. Ciarlet, P.G.:The Finite Element Method for Elliptic Problems. North-Holland Publishing, Amsterdam (1978) 14. Du, J., Chung, E.T.:An adaptive staggered discontinuous Galerkin method for the steady state convection-difusion equation. J. Sci. Comput. 77, 1490-1518 (2018) 15. Forchheimer, P.:Wasserbewegung durch Boden. Z. Ver. Deutsh. Ing. 45, 1782-1788 (1901) 16. Girault, V., Wheeler, M.F.:Numerical discretization of a Darcy-Forchheimer model. Numer. Math. 110, 161-198 (2008) 17. Guzmán, J., Neilan, M.:A family of nonconforming elements for the Brinkman problem. IMA J. Numer. Anal. 32, 1484-1508 (2012) 18. Kim, H.H., Chung, E.T., Lam, C.Y.:Mortar formulation for a class of staggered discontinuous Galerkin methods. Comput. Math. Appl. 71, 1568-1585 (2016) 19. Kim, H.H., Chung, E.T., Lee, C.S.:A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51, 3327-3350 (2013) 20. Kim, M.-Y., Park, E.-J.:Fully discrete mixed fnite element approximations for non-Darcy fows in porous media. Comput. Math. Appl. 38, 113-129 (1999) 21. Kim, D., Zhao, L., Park, E.-J.:Staggered DG methods for the pseudostress-velocity formulation of the Stokes equations on general meshes. SIAM J. Sci. Comput. 42, A2537-A2560 (2020) 22. Könnö, J., Stenberg, R.:H(div)-conforming fnite elements for the Brinkman problem. Math. Models Methods Appl. Sci. 21, 2227-2248 (2011) 23. Louaked, M., Seloula, N., Trabelsi, S.:Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method. Numer. Methods Partial Difer. Equ. 33, 1949-1965 (2017) 24. Mardal, K.A., Tai, X.-C., Winther, R.:A robust fnite element method for Darcy-Stokes fow. SIAM J. Numer. Anal. 40, 1605-1631 (2002) 25. Pan, H., Rui, H.:Mixed element method for two-dimensional Darcy-Forchheimer model. J. Sci. Comput. 52, 563-587 (2012) 26. Park, E.-J.:Mixed fnite element methods for generalized Forchheimer fow in porous media. Numer. Methods Partial Difer. Equ. 21, 213-228 (2005) 27. Paye, L.E., Straughan, B.:Convergence and continuous dependence for the Brinkman-Forchheimer equations. Stud. Appl. Math. 102, 419-439 (1999) 28. Rui, H., Liu, W.:A two-grid block-centered fnite diference method for Darcy-Forchheimer fow in porous media. SIAM J. Numer. Anal. 53, 1941-1962 (2015) 29. Rui, H., Pan, H.:A block-centered fnite diference method for the Darcy-Forchheimer model. SIAM J. Numer. Anal. 50, 2612-2631 (2012) 30. Showalter, R.E.:Monotone Operators in Banach Spaces and Nonlinear Partial Diferential Equations. In Mathematics Surveys and Monographs, vol. 49. AMS, Providence (1997) 31. Tian, L., Guo, H., Jia, R., Yang, Y.:An h-adaptive local discontinuous Galerkin method for simulating wormhole propagation with Darcy-Forcheiner model. J. Sci. Comput. (2020). https://doi.org/10.1007/s10915-020-01135-x 32. Zhao, L., Chung, E.T., Lam, M.:A new staggered DG method for the Brinkman problem robust in the Darcy and Stokes limits. Comput. Methods Appl. Mech. Engrg. (2020). https://doi.org/10.1016/j.cma.[2020]112986 33. Zhao, L., Chung, E. T., Park, E.-J., Zhou, G.:Staggered DG method for coupling of the Stokes and Darcy-Forchheimer problems. SIAM J. Numer. Anal. 29, 1-31 (2021) 34. Zhao, L., Park, E.-J.:A staggered discontinuous Galerkin method of minimal dimension on quadrilateral and polygonal meshes. SIAM J. Sci. Comput. 40, A2543-A2567 (2018) 35. Zhao, L., Park, E.-J.:A new hybrid staggered discontinuous Galerkin method on general meshes. J. Sci. Comput. (2020). https://doi.org/10.1007/s10915-019-01119-6 36. Zhao, L., Park, E.-J., Shin, D.-W.:A staggered DG method of minimal dimension for the Stokes equations on general meshes. Comput. Methods Appl. Mech. Energy 345, 854-875 (2019) 37. Zhao, L., Park, E.-J.:A lowest-order staggered DG method for the coupled Stokes-Darcy problem. IMA J. Numer. Anal. 40, 2871-2897 (2020) 38. Zhao, L., Park, E.-J.:A staggered cell-centered DG method for linear elasticity on polygonal meshes. SIAM J. Sci. Comput. 42, A2158-A2181 (2020) |