1. Berge, C.:Graphs and Hypergraphs, vol. 6, 2nd edn. North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam; London (1976) 2. Bretto, A.:Hypergraph Theory:an Introduction. Springer, Berlin (2013) 3. Bai, S.L., Lu, L.Y.:A bound on the spectral radius of hypergraphs with e edges. Linear Algebra Appl. 549, 203-218 (2018) 4. Bu, C.J., Zhang, X., Zhou, J., Wang, W.Z., Wei, Y.M.:The inverse, rank and product of tensors. Linear Algebra Appl. 446, 269-280 (2014) 5. Chen, D.M., Chen, Z.B., Zhang, X.D.:Spectral radius of uniform hypergraphs and degree sequences. Front. Math. China 12, 1279-1288 (2017) 6. Cooper, J., Dutle, A.:Spectra of uniform hypergraphs. Linear Algebra Appl. 436, 3268-3292 (2012) 7. Chang, K.C., Pearson, K., Zhang, T.:Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507-520 (2008) 8. Chang, K.C., Qi, L.Q., Zhang, T.:A survey on the spectral theory of nonnegative tensors. Numer. Linear Algebra Appl. 20, 891-912 (2013) 9. Erdős, P., Ko, C., Rado, R.:Intersection theorems for systems of fnite sets. Quart. J. Math. Oxford Ser. 12(2), 313-320 (1961) 10. Frankl, P.:Erdős-Ko-Rado theorem with conditions on the maximal degree. J. Combin. Theory Ser. A 46, 252-263 (1987) 11. Friedland, S., Gaubert, S., Han, L.:Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl. 438, 738-749 (2013) 12. Frankl, P., Han, J., Huang, H., Zhao, Y.:A degree version of the Hilton-Milner theorem. J. Combin. Theory Ser. A 155, 493-502 (2018) 13. Frankl, P., Tokushige, N.:A note on Huang-Zhao theorem on intersecting families with large minimum degree. Discrete Math. 340, 1098-1103 (2017) 14. Frankl, P., Tokushige, N.:Invitation to intersection problems for fnite sets. J. Combin. Theory Ser. A 144, 157-211 (2016) 15. Fan, Y.Z., Tan, Y.Y., Peng, X.X., Liu, A.H.:Maximizing spectral radii of uniform hypergraphs with few edges. Discuss. Math. Graph Theory 36, 845-856 (2016) 16. Godsil, C., Meagher, K.:Erdős-Ko-Rado theorems:algebraic approaches. Cambridge Studies in Advanced Mathematics, vol. 149. Cambridge University Press, Cambridge (2016) 17. Guo, H.Y., Zhou, B.:On the α-spectral radius of uniform hypergraphs. Discuss. Math. Graph Theory 40, 559-575 (2020) 18. Han, J., Kohayakawa, Y.:The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton-Milner family. Proc. Am. Math. Soc. 145, 73-87 (2017) 19. Hilton, A.J.W., Milner, E.C.:Some intersection theorems for systems of fnite sets. Quart. J. Math. Oxford Ser. 2(18), 369-384 (1967) 20. Hu, S.L., Qi, L.Q.:The Laplacian of a uniform hypergraph. J. Comb. Optim. 29, 331-366 (2015) 21. Hu, S.L., Qi, L.Q.:The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph. Discrete Appl. Math. 169, 140-151 (2014) 22. Hu, S.L., Qi, L.Q., Xie, J.S.:The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. Linear Algebra Appl. 469, 1-27 (2015) 23. Huang, H., Zhao, Y.N.:Degree versions of the Erdős-Ko-Rado theorem and Erdős hypergraph matching conjecture. J. Combin. Theory Ser. A 150, 233-247 (2017) 24. Keevash, P., Lenz, J., Mubayi, D.:Spectral extremal problems for hypergraphs. SIAM J. Discrete Math. 28, 1838-1854 (2014) 25. Lin, H.Y., Guo, H.Y., Zhou, B.:On the α-spectral radius of irregular uniform hypergraphs. Linear Multilinear Algebra 68, 265-277 (2020) 26. Lin, H.Y., Mo, B., Zhou, B., Weng, W.M.:Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs. Appl. Math. Comput. 285, 217-227 (2016) 27. Li, H.H., Shao, J.Y., Qi, L.Q.:The extremal spectral radii of k-uniform supertrees. J. Comb. Optim. 32, 741-764 (2016) 28. Nikiforov, V.:Merging the A- and Q-spectral theories. Appl. Anal. Discrete Math. 11, 81-107 (2017) 29. Qi, L.Q.:Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40, 1302-1324 (2005) 30. Qi, L.Q., Shao, J.Y., Wang, Q.:Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues. Linear Algebra Appl. 443, 215-227 (2014) 31. Shao, J.Y.:A general product of tensors with applications. Linear Algebra Appl. 439, 2350-2366 (2013) 32. Xiao, P., Wang, L.G.:The maximum spectral radius of uniform hypergraphs with given number of pendant edges. Linear Multilinear Algebra 67, 1392-1403 (2019) 33. Xiao, P., Wang, L.G., Lu, Y.:The maximum spectral radii of uniform supertrees with given degree sequences. Linear Algebra Appl. 523, 33-45 (2017) 34. Yang, Y.N., Yang, Q.Z.:Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517-2530 (2010) 35. Yuan, X.Y., Zhang, M., Lu, M.:Some upper bounds on the eigenvalues of uniform hypergraphs. Linear Algebra Appl. 484, 540-549 (2015) |