1. Batselier, K. (Kim):Data to reproduce experiments in research article "meracle:constructive layer-wise conversion of a tensor train into a MERA" (2020). https://doi.org/10.4121/UUID:CB37D1B8-A505-46EB-8C42-FE819429624B. https://data.4tu.nl/repository/uuid:cb37d1b8-a505-46eb-8c42-fe819429624b 2. Carroll, J., Chang, J.J.:Analysis of individual diferences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition. Psychometrika 35(3), 283-319 (1970) 3. Cichocki, A., Lee, N., Oseledets, I., Phan, A.H., Zhao, Q., Mandic, D.P.:Tensor networks for dimensionality reduction and large-scale optimization:part 1 low-rank tensor decompositions. Foundations and Trends? in Machine Learning 9(4/5), 249-429 (2016) 4. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.:Tensor decompositions for signal processing applications:from two-way to multiway component analysis. IEEE Sig. Process. Mag. 32(2), 145-163 (2015) 5. Cichocki, A., Phan, A.H., Zhao, Q., Lee, N., Oseledets, I., Sugiyama, M., Mandic, D.P.:Tensor networks for dimensionality reduction and large-scale optimization:part 2 applications and future perspectives. Foundations and Trends? in Machine Learning 9(6), 431-673 (2017) 6. De Lathauwer, L., De Moor, B., Vandewalle, J.:A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253-1278 (2000) 7. Dolgov, S., Khoromskij, B.:Two-level QTT-Tucker format for optimized tensor calculus. SIAM J. Matrix Anal. Appl. 34(2), 593-623 (2013) 8. Espig, M., Hackbusch, W., Handschuh, S., Schneider, R.:Optimization problems in contracted tensor networks. Comput. Visualization Sci. 14(6), 271-285 (2011) 9. Espig, M., Naraparaju, K.K., Schneider, J.:A note on tensor chain approximation. Comput. Visualization Sci. 15(6), 331-344 (2012) 10. Evenbly, G., Vidal, G.:Algorithms for entanglement renormalization. Phys. Rev. B 79, 144108 (2009) 11. Golub, G.H., van Loan, C.F.:Matrix Computations, fourth edn. Johns Hopkins University Press (2013) 12. Grasedyck, L.:Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029-2054 (2010) 13. Hackbusch, W., Kühn, S.:A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706-722 (2009) 14. Halko, N., Martinsson, P.G., Tropp, J.A.:Finding structure with randomness:probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217-288 (2011) 15. Harshman, R.A.:Foundations of the PARAFAC procedure:models and conditions for an "explanatory" multi-modal factor analysis. UCLA Working Papers in Phonetics 16(1), 84 (1970) 16. Hitchcock, F.:The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164-189 (1927) 17. Holtz, S., Rohwedder, T., Schneider, R.:The alternating linear scheme for tensor optimization in the tensor train format. SIAM J. Sci. Comput. 34(2), A683-A713 (2012) 18. Khoromskij, B.N.:O(dlog N)-quantics approximation of N-d tensors in high-dimensional numerical modeling. Constructive Approx. 34(2), 257-280 (2011) 19. Kolda, T., Bader, B.:Tensor decompositions and applications. SIAM Rev. 51(3), 455-500 (2009) 20. Lehoucq, R.B., Sorensen, D.C.:Defation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17(4), 789-821 (1996) 21. Oseledets, I.:Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295-2317 (2011) 22. Oseledets, I., Tyrtyshnikov, E.:TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 422(1), 70-88 (2010) 23. Rommer, S., Östlund, S.:Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group. Phys. Rev. B 55, 2164-2181 (1997) 24. Schollwöck, U.:The density-matrix renormalization group in the age of matrix product states. Annals of Physics 326(1), 96-192 (2011) 25. Shi, Y.Y., Duan, L.M., Vidal, G.:Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 74(2), 022320 (2006) 26. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos, C.:Tensor decomposition for signal processing and machine learning. IEEE Trans. Sig. Process. 65(13), 3551-3582 (2017) 27. Tucker, L.R.:Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279-311 (1966) 28. Vannieuwenhoven, N., Vandebril, R., Meerbergen, K.:A new truncation strategy for the higher-order singular value decomposition. SIAM J. Sci. Comput. 34(2), A1027-A1052 (2012) 29. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.:Tensorlab 3.0 (2016). https://www.tensorlab.net. 30. Vidal, G.:A class of quantum many-body states that can be efciently simulated. Phys. Rev. Lett. 101, 110501 (2008) |