1. Bradley, M.W., Aiello, K.A., Ponnapalli, S.P., Hanson, H.A., Alter, O.:GSVD- and tensor GSVDuncovered patterns of DNA copy-number alterations predict adenocarcinomas survival in general and in response to platinum. Appl. Phys. Lett. Bioeng. 3(3), 036104 (2019). https://doi.org/10.1137/1.9781611974782.143 2. Brownawell, W.D.:Bounds for the degrees in the Nullstellensatz. Ann. Math. 126, 577-591 (1987) 3. Brownawell, W.D.:A pure power product version of the Hilbert Nullstellensatz. Mich. Math. J. 45(3), 581-597 (1998) 4. Bruzda, W., Friedland, S., Życzkowski, K.:Tensor rank and entanglement of pure quantum states. arXiv:1912.06854 (2019) 5. Bürgisser, P., Clausen, M., Shokrollahi, A.:Algebraic Complexity Theory. Springer, Berlin (1997) 6. Edmonds, J.:Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Stand. Sect. B 71B, 241-245 (1967) 7. Comon, P., Golub, G., Lim, L.H., Mourrain, B.:Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30, 1254-1279 (2008) 8. Ein, L., Lazarsfeld, R.:A geometric efective Nullstellensatz. Invent. Math. 137(2), 427-448 (1999) 9. Friedland, S.:On the generic and typical ranks of 3-tensors. Linear Algebra Appl. 436, 478-497 (2012) 10. Friedland, S.:Remarks on the symmetric rank of symmetric tensors. SIAM J. Matrix Anal. Appl. 37(1), 320-337 (2016) 11. Friedland, S., Aliabadi, M.:Linear Algebra and Matrices. SIAM, Philadelphia (2018) 12. Friedland, S., Lim, L.H.:Nuclear norm of higher-order tensors. Math. Comput. 87(311), 1255-1281 (2018) 13. Friedland, S., Stawiska, M.:Best approximation on semi-algebraic sets and k-border rank approximation of symmetric tensors. arXiv:1311.1561 (2013) 14. Friedland, S., Wang, L.:Spectral norm of a symmetric tensor and its computation. Math. Comput. 89, 2175-2215 (2020) 15. Hastad, J.:Tensor rank is NP-complete. J. Algorithms 11, 644-654 (1990) 16. Hitchcock, F.L.:The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164-189 (1927) 17. Kóllar, J.:Sharp efective Nullstellensatz. J. Am. Math. Soc. 1, 963-975 (1988) 18. Landsberg, J.M.:Tensors:Geometry and Applications. American Mathematical Society, Providence (2012) 19. Lee, N., Cichocki, A.:Fundamental tensor operations for large-scale data analysis using tensor network formats. Multidim. Syst. Sign Process 29, 921-960 (2018) 20. Lokshtanov, D., Paturi, R., Tamaki, S., Williams, R., Yu, H.:Beating brute force for systems of polynomial equations over fnite felds. In:Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2190-2202 (2017). https://doi.org/10.1137/1.9781611974782.143 21. Nie, J.:Generating polynomials and symmetric tensor decompositions. Found. Comput. Math. 17, 423-465 (2017) 22. Oeding, L., Ottaviani, G.:Eigenvectors of tensors and algorithms for Waring decomposition. J. Symb. Comput. 54, 9-35 (2013) 23. Reznick, B.:Sums of even powers of real linear forms. Memoirs of the American Mathematical Society 96(463):MR1096187 (93h:11043) (1992) 24. Schaefer, M., Stefankovic, D.:The complexity of tensor rank. Theory Comput. Syst. 62, 1161-1174 (2018) 25. Schrijver, A.:Theory of Linear and Integer Programming. Wiley, New York (1998) 26. Shitov, Y.:How hard is the tensor rank? arXiv:1611.01559 (2016) 27. Shitov, Y.:A counterexample to Comon's conjecture. SIAM J. Appl. Algebra Geom. 2(3), 428-443 (2018) 28. Strassen, V.:Gaussian elimination is not optimal. Numer. Math. 13, 354-356 (1969) 29. Strassen, V.:Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math. 375(376), 406-443 (1987) 30. Zhang, X., Huang, Z.H., Qi, L.:Comon's conjecture, rank decomposition, and symmetric rank decomposition of symmetric tensors. SIAM J. Matrix Anal. A. 37(4), 1719-1728 (2016) |