1. Abgrall, R., Baccigalupi, P., Tokareva, S.:A high-order nonconservative approach for hyperbolic equations in fuid dynamics. Comput. Fluids 169, 10-22 (2018) 2. Abgrall, R., de Santis, D.:High-order preserving residual distribution schemes for advection-difusion scalar problems on arbitrary grids. SIAM J. Sci. Comput. 36(3), A955-A983 (2014). http://hal.inria.fr/docs/00/76/11/59/PDF/8157.pdf 3. Abgrall, R., Tokareva, S.:Staggered grid residual distribution scheme for Lagrangian hydrodynamics. SIAM SISC 39(5), A2345-A2364 (2017). https://hal.inria.fr/hal-01327473 4. Abgrall, R.:A residual method using discontinuous elements for the computation of possibly non smooth fows. Adv. Appl. Math. Mech. 2, 32-44 (2010) 5. Abgrall, R.:Toward the ultimate conservative scheme:following the quest. J. Comput. Phys. 167(2), 277-315 (2001) 6. Abgrall, R.:Essentially non-oscillatory residual distribution schemes for hyperbolic problems. J. Comput. Phys. 214(2), 773-808 (2006) 7. Abgrall, R.:High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. J. Sci. Comput. 73, 461-494 (2017) 8. Abgrall, R.:Some remarks about conservation for residual distribution schemes. Comput. Methods Appl. Math. 18(3), 327-351 (2018a) 9. Abgrall, R.:A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640-666 (2018b) 10. Abgrall, R., Roe, P.L.:High-order fuctuation schemes on triangular meshes. J. Sci. Comput. 19(1/2/3), 3-36 (2003) 11. Abgrall, R., Shu, C.W.:Development of residual distribution schemes for discontinuous Galerkin methods. Commun. Comput. Phys. 5, 376-390 (2009) 12. Abgrall, R., Larat, A., Ricchiuto, M.:Construction of very high order residual distribution schemes for steady inviscid fow problems on hybrid unstructured meshes. J. Comput. Phys. 230(11), 4103-4136 (2011) 13. Burman, E., Hansbo, P.:Edge stabilization for Galerkin approximation of convection-difusion-reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437-1453 (2004) 14. Ciarlet, P.:The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) 15. Deconinck, H., Roe, P.L., Struijs, R.:A multidimensional generalization of Roe's fux diference splitter for the Euler equations. Comput. Fluids 22(2/3), 215-222 (1993) 16. Ern, A., Guermond, J.L.:Theory and Practice of Finite Elements. Springer, New York (2004) 17. Gassner, Gregor J., Winters, Andrew R., Kopriva, David A.:Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39-66 (2016) 18. Godlewski, E., Raviart, P.-A.:Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (1996) 19. Hou, T., Le Floch, P.:Why non conservative converges to the wrong solutions. Math. Comput. 62(206), 497-530 (1994) 20. Hughes, T.J.R., Franca, L.P., Mallet, M.:A new fnite element formulation for CFD:I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comp. Methods Appl. Mech. Eng. 54, 223-234 (1986) 21. Kröner, D., Rokyta, M., Wierse, M.:A Lax-Wendrof type theorem for upwind fnite volume schemes in 2-d. East-West J. Numer. Math. 4(4), 279-292 (1996) 22. Lax, P.D., Wendrof, B.:Diference schemes for hyperbolic equations with high order of accuracy. Commun. Pure Appl. Math. 17, 381-398 (1964) 23. Leveque, R.J.:Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002) 24. Ni, R.-H.:A multiple grid scheme for solving the Euler equations. AIAA J. 20, 1565-1571 (1981) 25. Ricchiuto, M., Abgrall, R.:Explicit Runge-Kutta residual distribution schemes for time dependent problems:second order case. J. Comput. Phys. 229(16), 5653-5691 (2010) 26. Roe, P.:My way-a computational autobiography. Commun. Appl. Math. Comput. (2019). https://doi. org/10.1007/s42967-019-00021-0 27. Roe, P.L.:Approximate Riemann solvers, parameter vectors, and diference schemes. J. Comput. Phys. 43, 357-372 (1981) 28. Sonntag, M., Munz, C.-D.:Efcient parallelization of a shock capturing for discontinuous Galerkin methods using fnite volume sub-cells. J. Sci. Comput. 70(3), 1262-1289 (2017) 29. Struijs, R., Deconinck, H., Roe, P.L.:Fluctuation splitting schemes for the 2D Euler equations. VKILS 1991-01, Computational Fluid Dynamics (1991) |