1. Amsallem, D., Zahr, M.J., Farhat, C.: Nonlinear model order reduction based on local reduced-order bases. Int. J. Numer. Meth. Eng. 92(10), 891–916 (2012). https:// doi. org/ 10. 1002/ nme. 4371 2. Bank, R.E., Sherman, A.H.: An adaptive, multi-level method for elliptic boundary value problems. Computing 26(2), 91–105 (1981) 3. Barnett, J., Farhat, C.: Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projection-based model order reduction. J. Comput. Phys. 464(111), 348 (2022). https:// doi. org/ 10. 1016/j. jcp. 2022. 111348 4. Borker, R., Huang, D., Grimberg, S., Farhat, C., Avery, P., Rabinovitch, J.B.R.: Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid-structure interaction. Int. J. Numer. Meth. Fluids 90(8), 389–424 (2019) 5. Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. Int. J. Numer. Meth. Eng. 86(2), 155–181 (2011) 6. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.I.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013) 7. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010) 8. Eftang, J.L., Patera, A.T., Rønquist, E.M.: An hp certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32(6), 3170–3200 (2010). https:// doi. org/ 10. 1137/ 09078 0122 9. Elkan, C.: Using the triangle inequality to accelerate K-means. In: Proceedings of the Twentieth International Conference on Machine Learning. AAAI Press, ICML 2003, pp. 147–153 (2003) 10. Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int. J. Numer. Meth. Eng. 98(9), 625–662 (2014). https:// doi. org/ 10. 1002/ nme. 4668 11. Farhat, C., Chapman, T., Avery, P.: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Meth. Eng. 102(5), 1077–1110 (2015) 12. Farhat, C., Geuzaine, P., Brown, G.: Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter. Comput. Fluids 32(1), 3–29 (2003) 13. Farhat, C., Grimberg, S., Manzoni, A., et al.: Computational bottlenecks for PROMs: pre-computation and hyperreduction. In: Benner, P., Grivet-Talocia, S., Quarteroni, A., et al. (eds.) Model Order Reduction - Volume 2: Snapshot-Based Methods and Algorithms. De Gruyter, Berlin, chap. 5, pp. 181–244 (2020). https:// doi. org/ 10. 1515/ 97831 10671 490- 005 14. Farhat Research Group: Aero-F (2022). frg. bitbu cket. io 15. Farrell, P., Maddison, J.: Conservative interpolation between volume meshes by local Galerkin projection. Comput. Methods Appl. Mech. Eng. 200(1/2/3/4), 89–100 (2011) 16. Geuzaine, P., Brown, G., Harris, C., Farhat, C.: Aeroelastic dynamic analysis of a full F-16 configuration for various flight conditions. AIAA J. 41(3), 363–371 (2003) 17. Gräßle, C., Hinze, M.: POD reduced order modeling for evolution equations utilizing arbitrary finite element discretizations. Adv. Comput. Math. 44(6), 1941–1978 (2018). https:// doi. org/ 10. 1007/ s10444- 018- 9620-x 18. Grimberg, S., Farhat, C., Tezaur, R., Bou-Mosleh, C.: Mesh sampling and weighting for the hyperreduction of nonlinear Petrov-Galerkin reduced-order models with local reduced-order bases. Int. J. Numer. Meth. Eng. 122(7), 1846–1874 (2021) 19. Grimberg, S., Farhat, C., Youkilis, N.: On the stability of projection-based model order reduction for convection-dominated laminar and turbulent flows. J. Comput. Phys. 419(109), 681 (2020). https:// doi. org/ 10. 1016/j. jcp. 2020. 109681 20. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Math. Model. Num. Anal. 42(2), 277–302 (2008) 21. Huang, W.: Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys. 1(2), 276–310 (2006) 22. Jiao, X., Heath, M.T.: Common-refinement-based data transfer between non-matching meshes in multiphysics simulations. Int. J. Numer. Meth. Eng. 61(14), 2402–2427 (2004) 23. Leutenegger, S.T., Lopez, M.A., Edgington, J.: STR: a simple and efficient algorithm for R-tree packing. In: Proceedings of the 13th International Conference on Data Engineering, IEEE, pp. 497–506 (1997) 24. Mitchell, W.F.: Unified multilevel adaptive finite element methods for elliptic problems. University of Illinois at Urbana-Champaign (1988) 25. Remacle, J.F., Li, X., Shephard, M.S., Flaherty, J.E.: Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods. Int. J. Numer. Meth. Eng. 62(7), 899–923 (2005) 26. Schmidt, A., Siebert, K.G.: ALBERT: an adaptive hierarchical finite element toolbox. Albert-LudwigsUniv., Math. Fak. (2000) 27. Ullmann, S., Rotkvic, M., Lang, J.: POD-Galerkin reduced-order modeling with adaptive finite element snapshots. J. Comput. Phys. 325, 244–258 (2016). https:// doi. org/ 10. 1016/j. jcp. 2016. 08. 018 28. Yano, M.: A minimum-residual mixed reduced basis method: exact residual certification and simultaneous finite-element reduced-basis refinement. ESAIM: Math. Model. Numer. Anal. 50(1), 163–185 (2016). https:// doi. org/ 10. 1051/ m2an/ 20150 39 29. Yano, M.: A reduced basis method for coercive equations with an exact solution certificate and spatioparameter adaptivity: energy-norm and output error bounds. SIAM J. Sci. Comput. 40(1), A388–A420 (2018). https:// doi. org/ 10. 1137/ 16M10 71341 |