1. Abgrall, R.: A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640–666 (2018) 2. Abgrall, R., Bacigaluppi, P., Tokareva, S.: A high-order nonconservative approach for hyperbolic equations in fluid dynamics. Comput. Fluids 169, 10–22 (2018) 3. Abgrall, R., Busto, S., Dumbser, M.: A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics. Appl. Math. Comput. 440,127629 (2023) 4. Abgrall, R., Öffner, P., Ranocha, H.: Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes: application to structure preserving discretization. J. Comput. Phys. 453, 110955 (2022) 5. Balsara, D.: Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149–184 (2004) 6. Balsara, D.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010) 7. Balsara, D., Dumbser, M.: Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. J. Comput. Phys. 299, 687–715 (2015) 8. Balsara, D., Spicer, D.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999) 9. Becker, R.: Stosswelle und Detonation. Physik 8, 321 (1923) 10. Bell, J.B., Coletta, P., Glaz, H.M.: A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85, 257–283 (1989) 11. Bhole, A., Nkonga, B., Gavrilyuk, S., Ivanova, K.: Fluctuation splitting Riemann solver for a nonconservative modeling of shear shallow water flow. J. Comput. Phys. 392, 205–226 (2019) 12. Bonnet, A., Luneau, J.: Aérodynamique. Théories de la dynamique des fluides. Cepadues Editions, Toulouse (1989) 13. Brock, R.: Development of roll-wave trains in open channels. J. Hydraul. Div. 95, 1401–1428 (1969) 14. Brock, R.: Periodic permanent roll waves. J. Hydraul. Div. 96, 2565–2580 (1970) 15. Busto, S., Dumbser, M.: A new thermodynamically compatible finite volume scheme for magnetohydrodynamics. SIAM J. Numer. Anal. (2023). In press 16. Busto, S., Dumbser, M., Gavrilyuk, S., Ivanova, K.: On thermodynamically compatible finite volume methods and path-conservative ADER discontinuous Galerkin schemes for turbulent shallow water flows. J. Sci. Comput. 88, 28 (2021) 17. Busto, S., Dumbser, M., Peshkov, I., Romenski, E.: On thermodynamically compatible finite volume schemes for continuum mechanics. SIAM J. Sci. Comput. 44, A1723–A1751 (2022) 18. Busto, S., Río-Martín, L., Vázquez-Cendón, M.E., Dumbser, M.: A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes. Appl. Math. Comput. 402, 126117 (2021) 19. Castro, M., Gallardo, J., Parés, C.: High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput. 75, 1103–1134 (2006) 20. Castro, M.J., Fjordholm, U.S., Mishra, S., Parés, C.: Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems. SIAM J. Numer. Anal. 51(3), 1371–1391 (2013) 21. Chan, J., Lin, Y., Warburton, T.: Entropy stable modal discontinuous Galerkin schemes and wall boundary conditions for the compressible Navier-Stokes equations. J. Comput. Phys. 448, 110723 (2022) 22. Chan, J., Taylor, C.G.: Efficient computation of Jacobian matrices for entropy stable summation-by-parts schemes. J. Comput. Phys. 448, 110701 (2022) 23. Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54(2), 1313–1340 (2016) 24. Chandrashekar, P., Nkonga, B., Meena, A.M., Bhole, A.: A path conservative finite volume method for a shear shallow water model. J. Comput. Phys. 413, 109457 (2020) 25. Cheng, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017) 26. Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002) 27. Derigs, D., Winters, A.R., Gassner, G., Walch, S., Bohm, M.: Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations. J. Comput. Phys. 364, 420–467 (2018) 28. Dhaouadi, F., Dumbser, M.: A first order hyperbolic reformulation of the Navier-Stokes-Korteweg system based on the GPR model and an augmented Lagrangian approach. J. Comput. Phys. 470, 111544 (2022) 29. Dhaouadi, F., Favrie, N., Gavrilyuk, S.: Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation. Stud. Appl. Math. 142, 336–358 (2019) 30. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016) 31. Falle, S.A.E.G.: Rarefaction shocks, shock errors and low order of accuracy in ZEUS. Astrophys. J. 577, L123–L126 (2002) 32. Falle, S.A.E.G., Komissarov, S.: On the inadmissibility of non-evolutionary shocks. J. Plasma Phys. 65, 29–58 (2001) 33. Favrie, N., Gavrilyuk, S.: A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves. Nonlinearity 30, 2718–2736 (2017) 34. Fjordholm, U.S., Mishra, S.: Accurate numerical discretizations of non-conservative hyperbolic systems. ESAIM Math. Model. Numer. Anal. 46(1), 187–206 (2012) 35. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012) 36. Freistühler, H.: Relativistic barotropic fluids: a Godunov-Boillat formulation for their dynamics and a discussion of two special classes. Arch. Ration. Mech. Anal. 232, 473–488 (2019) 37. Friedrichs, K.: Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11, 333–418 (1958) 38. Friedrichs, K., Lax, P.: Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. USA 68, 1686–1688 (1971) 39. Gaburro, E., Öffner, P., Ricchiuto, M., Torlo, D.: High order entropy preserving ADER-DG schemes. Appl. Math. Comput. 440, 127644 (2022) 40. Gassner, G., Winters, A., Kopriva, D.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016) 41. Gavrilyuk, S., Ivanova, K., Favrie, N.: Multi-dimensional shear shallow water flows: problems and solutions. J. Comput. Phys. 366, 252–280 (2018) 42. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using Navier-Stokes equations and multigrid method. J. Comput. Phys. 48, 387–411 (1982) 43. Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk 139(3), 521–523 (1961) 44. Godunov, S.K.: Symmetric form of the equations of magnetohydrodynamics. Numer. Methods Mech. Contin. Media. 3(1), 26–31 (1972) 45. Godunov, S.K.: Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field. Comput. Math. Math. Phys. 52, 787–799 (2012) 46. Godunov, S.K., Romenski, E.: Nonstationary equations of the nonlinear theory of elasticity in Euler coordinates. J. Appl. Mech. Tech. Phys. 13, 868–885 (1972) 47. Godunov, S.K., Romenski, E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic/Plenum Publishers, New York (2003) 48. Guermond, J., Popov, P.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74, 284–305 (2014) 49. Hennemann, S., Rueda-Ramírez, A.M., Hindenlang, F.J., Gassner, G.J.: A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations. J. Comput. Phys. 426, 109935 (2021) 50. Hiltebrand, A., Mishra, S.: Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126(1), 103–151 (2014) 51. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999) 52. Ivanova, K., Gavrilyuk, S.: Structure of the hydraulic jump in convergent radial flows. J. Fluid Mech. 860, 441–464 (2019) 53. Jiang, G., Wu, C.: A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 150, 561–594 (1999) 54. Liu, Y., Shu, C.-W., Zhang, M.: Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes. J. Comput. Phys. 354, 163–178 (2018) 55. Lukácová-Medvidóvá, M., Puppo, G., Thomann, A.: An all Mach number finite volume method for isentropic two-phase flow. J. Numer. Math. (2022) 56. Munz, C., Omnes, P., Schneider, R., Sonnendrücker, E., Voss, U.: Divergence correction techniques for maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161, 484–511 (2000) 57. Nkonga, B., Chandrashekar, P.: Exact solution for Riemann problems of the shear shallow water model. ESAIM Math. Modell. Numer. Anal. 56(4), 1115–1150 (2022) 58. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006) 59. Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Contin. Mech. Thermodyn. 30(6), 1343–1378 (2018) 60. Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Contin. Mech. Thermodyn. 28, 85–104 (2016) 61. Peshkov, I., Romenski, E., Dumbser, M.: Continuum mechanics with torsion. Contin. Mech. Thermodyn. 31, 1517–1541 (2019) 62. Ray, D., Chandrashekar, P.: An entropy stable finite volume scheme for the two dimensional Navier-Stokes equations on triangular grids. Appl. Math. Comput. 314, 257–286 (2017) 63. Ray, D., Chandrashekar, P., Fjordholm, U.S., Mishra, S.: Entropy stable scheme on two-dimensional unstructured grids for Euler equations. Commun. Comput. Phys. 19(5), 1111–1140 (2016) 64. Romenski, E.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Modell. 28(10), 115–130 (1998) 65. Romenski, E., Belozerov, A., Peshkov, I.: Conservative formulation for compressible multiphase flows. Q. Appl. Math. 74, 113–136 (2016) 66. Romenski, E., Drikakis, D., Toro, E.: Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42, 68–95 (2010) 67. Romenski, E., Peshkov, I., Dumbser, M., Fambri, F.: A new continuum model for general relativistic viscous heat-conducting media. Philos. Trans. R. Soc. A 378, 20190175 (2020) 68. Romenski, E., Resnyansky, A., Toro, E.: Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures. Q. Appl. Math. 65, 259–279 (2007) 69. Rueda-Ramírez, A.M., Hennemann, S., Hindenlang, F.J., Winters, A.R., Gassner, G.J.: An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part II: subcell finite volume shock capturing. J. Comput. Phys. 444 (2021) 70. Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasilinear hyperbolic systems Relativistic fluid dynamics. Ann. Inst. Henri Poincaré 34 65–84 (1981) 71. Schnücke, G., Krais, N., Bolemann, T., Gassner, G.J.: Entropy stable discontinuous Galerkin schemes on moving meshes for hyperbolic conservation laws. J. Sci. Comput. 82, 69 (2020) 72. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws I. Math. Comput. 49, 91–103 (1987) 73. Tavelli, M., Dumbser, M.: A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers. J. Comput. Phys. 341, 341–376 (2017) 74. Thein, F., Romenski, E., Dumbser, M.: Exact and numerical solutions of the Riemann problem for a conservative model of compressible two-phase flows. J. Sci. Comput. 93, 83 (2022) 75. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Cham (2009) |