[1] Albeverio, S., Wu, J.L., Zhang, T.S.: Parabolic SPDEs driven by Poisson white noise. Stoch. Process. Appl. 74, 21-36 (1998) [2] Assaad, O., Tudor, C.: Pathwise analysis and parameter estimation for the stochastic Burgers equation. Bulletin des Sciences Mathématiques 170, 102995 (2021) [3] Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Commun. Math. Phys. 165(2), 211-232 (1994) [4] Burgers, J.: The Nonlinear Diffusion Equation. Springer, Dordrecht (1974) [5] Da Prato, G., Debussche, A., Teman, R.: Stochastic Burgers equation. Nonlinear Differ. Equ. Appl. 1, 389-402 (1994) [6] Dalang, R., Mueller, C., Zambotti, L.: Hitting properties of parabolic SPDE’s with reflection. Ann. Probab. 34(4), 1423-1450 (2006) [7] Debbi, L., Dozzi, M.: On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch. Process. Appl. 115, 1764-1781 (2005) [8] Donati-Martin, C., Pardoux, E.: White noise driven SPDEs with reflection. Probab. Theory Relat. Fields 95(1), 1-24 (1993) [9] Dong, Z.: On the uniqueness of invariant measure of the Burgers equation driven by Lévy processes. J. Theoret. Probab. 21, 322-335 (2008) [10] Dong, Z., Xu, T.: One-dimensional stochastic Burgers equation driven by Lévy processes. J. Funct. Anal. 234, 631-678 (2007) [11] Duan, J., Peng, J.: White noise driven SPDEs with oblique reflection: existence and uniqueness. J. Math. Anal. Appl. 480(1), 123356 (2019) [12] Essaky, E., Ouknine, Y.: Homogenization of multivalued partial differential equations via reflected backward stochastic differential equations. Stoch. Anal. Appl. 22(1), 307-336 (2004) [13] Fournier, N.: Malliavin calculus for parabolic SPDEs with jumps. Stoch. Process. Appl. 87(1), 115-147 (2000) [14] Fu, G., Horst, U., Qiu, J.: Maximum principle for quasi-linear reflected backward SPDEs. J. Math. Anal. Appl. 456, 307-336 (2017) [15] Gyöngy, I.: Existence and uniqueness results for similinear stochastic partial differential equations. Stoch. Process. Appl. 73, 271-299 (1988) [16] Gyöngy, I., Nualart, D.: On the stochastic Burgers equation in the real line. Ann. Probab. 27, 782-802 (1999) [17] Hopf, E.: The partial differential equation. Comm. Pure Appl. Math. 3, 201-230 (1950) [18] Menaldi, J.: Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32(5), 733-744 (1983) [19] Menaldi, J., Robin, M.: Reflected diffusion processes with jumps. Ann. Probab. 13(2), 319-341 (1985) [20] Mytnik, L.: Stochastic partial differential equations driven by stable noise. Probab. Theory Related Fields 123(2), 157-201 (2002) [21] Nualart, D., Pardoux, E.: White noise driven quasilinear SPDEs with reflection. Probab. Theory Relat. Fields 93(1), 77-89 (1992) [22] Truman, A., Wu, J.: Stochastic Burgers equation with Lévy space-time white noise. In: Davies, I.M., Truman, A., Hassan, O., Morgan, K., Weatherill, N.P. (eds) Probabilistic Methods in Fluids, Proceedings of the Swansea 2002 Workshop, pp. 298-323. World Sci. Publishing, River Edge, NJ (2003) [23] Wu, J., Xie, B.: On a Burgers type nonlinear equation perturbed by a pure jump Lévy noise in Rd. Bulletin des Sciences Mathématiques 136(5), 484-506 (2012) [24] Zambotti, L.: A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge. J. Funct. Anal. 180(1), 195-209 (2001) [25] Zhang, T.: Systems of stochastic partial differential equations with reflection: existence and uniqueness. Stoch. Process. Appl. 33(2), 137-151 (2010) [26] Zhang, T.: White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities. Potential Anal. 121(6), 1356-1372 (2011) [27] Zhang, T.: Stochastic Burgers type equations with reflection: existence, uniqueness. J. Diff. Equat. 267(8), 4537-4571 (2019) |