[1] Anderson, J.D., Fundamentals of Aerodynamics, 5th edn. McGraw Hill Higher Education, New York (2010) [2] Bae, M., Chen, G.-Q., Feldman, M.: Regularity of solutions to regular shock reflection for potential flow. Invent. Math. 175, 505–543 (2009) [3] Bae, M., Chen, G.-Q., Feldman, M.: Prandtl-Meyer reflection configurations, transonic shocks, and free boundary problems (2019). arXiv:1901.05916 [4] Ben-Dor, G.: Shock Wave Reflection Phenomena. Springer, New York (2007) [5] Čanić, S., Keyfitz, B.L., Kim, E.H.: Free boundary problems for the unsteady transonic small disturbance equation: transonic regular reflection. Methods Appl. Anal. 7, 313–336 (2000) [6] Čanić, S., Keyfitz, B.L., Kim, E.H.: A free boundary problem for a quasi-linear degenerate elliptic equation: regular reflection of weak shocks. Commun. Pure Appl. Math. 55, 71–92 (2002) [7] Chang, T., Chen, G.-Q., Yang, S.L.: On the 2-D Riemann problem for the compressible Euler equations. I. Interaction of shocks and rarefaction waves. Discrete Contin. Dyn. Syst. 1, 555–584 (1995) [8] Chang, T., Chen, G.-Q., Yang, S.L.: On the 2-D Riemann problem for the compressible Euler equations. II. Interaction of contact discontinuities. Discrete Contin. Dyn. Syst. 6, 419–430 (2000) [9] Chang, T., Hsiao, L.: The Riemann Problem and Interaction of Waves in Gas Dynamics. Longman Scientific & Technical, Harlow/Wiley, New York (1989) [10] Chen, G-Q., Chen, J., Feldman, M.: Transonic flows with shocks past curved wedges for the full Euler equations. Discrete Contin. Dyn. Syst. 36, 4179–4211 (2016) [11] Chen, G.-Q., Chen, J., Feldman, M.: Stability and asymptotic behavior of transonic flows past wedges for the full Euler equations. Interfaces Free Bound. 19(4), 591–626 (2018) [12] Chen, G.-Q., Deng, X.M., Xiang, W.: Shock diffraction by convex cornered wedges for the nonlinear wave system. Arch. Ration. Mech. Anal. 211, 61–112 (2014) [13] Chen, G.-Q., Feldman, M.: Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J. Am. Math. Soc. 16, 461–494 (2003) [14] Chen, G.-Q., Feldman, M.: Global solutions of shock reflection by large-angle wedges for potential flow. Ann. Math. 171, 1067–1182 (2010) [15] Chen, G.-Q., Feldman, M.: The Mathematics of Shock Reflection-Diffraction and Von Neumann’s Conjectures. Research Monograph. Annals of Mathematics Studies, vol. 197. Princeton University Press, Princeton (2018) [16] Chen, G.-Q., Feldman, M., Hu, J.C., Xiang, W.: Loss of regularity of solutions of the Lighthill problem for shock diffraction for potential flow. SIAM J. Appl. Math. 52, 1096–1114 (2020) [17] Chen, G.-Q., Feldman, M., Xiang, W.: Uniqueness and stability for the shock reflection-diffraction problem for potential flow. Hyperbolic problems: theory, numerics, applications, 2–24, AIMS Ser. Appl. Math., 10, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2020 [18] Chen, G.-Q., Feldman, M., Xiang, W.: Convexity of self-similar transonic shocks and free boundaries for the Euler equations for potential flow. Arch. Ration. Mech. Anal. 238, 47–124 (2020) [19] Chen, G.-Q., Zhang, Y.Q., Zhu, D.W.: Existence and stability of supersonic Euler flows past Lipschitz wedges. Arch. Ration. Mech. Anal. 181, 261–310 (2006) [20] Chen, S.X.: Linear approximation of shock reflection at a wedge with large angle. Commun. Partial Differ. Equ. 21, 1103–1118 (1996) [21] Chen, S.X.: Construction of solutions to M-D Riemann problems for a 2×2 quasilinear hyperbolic system. Chin. Ann. Math. Ser. B 18, 345–358 (1997) [22] Chen, S.X., Fang, B.X.: Stability of transonic shocks in supersonic flow past a wedge. J. Differ. Equ. 233(1), 105–135 (2007) [23] Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, NewYork (1948) [24] Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2016) [25] Elling, V., Liu, T.P.: Supersonic flow onto a solid wedge. Commun. Pure Appl. Math. 61, 1347–1448 (2008) [26] Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 697–715 (1965) [27] Glimm, J., Majda, A.D.: Multidimensional Hyperbolic Problems and Computations. Springer, New York (1991) [28] Harabetian, E.: Diffraction of a weak shock by a wedge. Commun. Pure Appl. Math. 40, 849–863 (1987) [29] Hunter, J.K.: Transverse diffraction of nonlinear waves and singular rays. SIAM J. Appl. Math. 48, 1–37 (1988) [30] Hunter, J.K., Tesdall, A.M.: Weak shock reflection. In: Givoli, D., Grote, M.J., George, C., Papanicolaou, G.C.(eds) A Celebration of Mathematical Modeling, pp. 93–112. Springer, Berlin (2004) [31] Jones, D.M., Martin, P.M.E., Thornhill, C.K.: A note on the pseudo-stationary flow behind a strong shock diffracted or reflected at a corner. Proc. R. Soc. Lond. A 209, 238–248 (1951) [32] Keller, J.B., Blank, A.: Diffraction and reflection of pulses by wedges and corners. Commun. Pure Appl. Math. 4, 75–94 (1951) [33] Kim, E.H.: A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation. J. Differ. Equ. 248, 2906–2930 (2010) [34] Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 4(10), 537–566 (1957) [35] Li, J.Q., Zhang, T., Yang, S.L.: The Two-Dimensional Riemann Problem in Gas Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 98. Longman, Harlow (1998) [36] Mach, E.: Uber den verlauf von funkenwellen in der ebene und im raume. Sitzungsbr Akad Wiss Wien 78, 819–838 (1878) [37] Morawetz, C.S.: Potential theory for regular and Mach reflection of a shock at a wedge. Commun. Pure Appl. Math. 47, 593–624 (1994) [38] Prandtl, L.: Allgemeine Überlegungen über die Strömung zusammendrückbarer Flüssigkeiten. Z. Angew. Math. Mech. 16, 129–142 (1936) [39] Riemann, B.: Über die Fortpflanzung ebener Luftvellen von endlicher Schwingungsweite. Gött. Abh. Math. Cl. 8, 43–65 (1860) [40] Serre, D.: Shock Reflection in Gas Dynamics. Handbook of Mathematical Fluid Dynamics. Elsevier, Amsterdam (2007) [41] Sheng, W.C., Yin, G.: Transonic shock and supersonic shock in the regular reflection of a planar shock. Z. Angew. Math. Phys. 60, 438–449 (2009) [42] Smoller, J.: The Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer, New York (1994) [43] Van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford (1982) [44] Von Neumann J.: Oblique reflection of shocks. Explosive Research Report No 12, Navy Dept. Bureau of Ordinance, Washington DC (1943) [45] Yang, H.C., Zhang, M.M., Wang, Q.: Global solutions of shock reflection problem for the pressure gradient system. Commun. Pure Appl. Anal. 19, 3387–3428 (2020) [46] Zhang, T., Zheng, Y.X.: Conjecture on the structure of solution of the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal. 21, 593–630 (1990) [47] Zheng, Y.X.: Systems of Conservation Laws: Two-Dimensional Riemann Problems. Birkhäuser, Boston (2001) [48] Zheng, Y.X.: Two-dimensional regular shock reflection for the pressure gradient system of conservation laws. Acta Math. Appl. Sin. Engl. Ser. 22, 177–210 (2006) |