Communications on Applied Mathematics and Computation ›› 2023, Vol. 5 ›› Issue (2): 722-750.doi: 10.1007/s42967-021-00137-2
Jonas Zeifang1,2, Andrea Beck2,3
收稿日期:
2020-09-22
修回日期:
2021-04-06
出版日期:
2023-06-20
发布日期:
2023-05-26
通讯作者:
Jonas Zeifang, jonas.zeifang@uhasselt.be;Andrea Beck, andrea.beck@ovgu.de
E-mail:jonas.zeifang@uhasselt.be;andrea.beck@ovgu.de
基金资助:
Jonas Zeifang1,2, Andrea Beck2,3
Received:
2020-09-22
Revised:
2021-04-06
Online:
2023-06-20
Published:
2023-05-26
Contact:
Jonas Zeifang, jonas.zeifang@uhasselt.be;Andrea Beck, andrea.beck@ovgu.de
E-mail:jonas.zeifang@uhasselt.be;andrea.beck@ovgu.de
Supported by:
摘要: Considering droplet phenomena at low Mach numbers, large differences in the magnitude of the occurring characteristic waves are presented. As acoustic phenomena often play a minor role in such applications, classical explicit schemes which resolve these waves suffer from a very restrictive timestep restriction. In this work, a novel scheme based on a specific level set ghost fluid method and an implicit-explicit (IMEX) flux splitting is proposed to overcome this timestep restriction. A fully implicit narrow band around the sharp phase interface is combined with a splitting of the convective and acoustic phenomena away from the interface. In this part of the domain, the IMEX Runge-Kutta time discretization and the high order discontinuous Galerkin spectral element method are applied to achieve high accuracies in the bulk phases. It is shown that for low Mach numbers a significant gain in computational time can be achieved compared to a fully explicit method. Applications to typical droplet dynamic phenomena validate the proposed method and illustrate its capabilities.
中图分类号:
Jonas Zeifang, Andrea Beck. A Low Mach Number IMEX Flux Splitting for the Level Set Ghost Fluid Method[J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 722-750.
Jonas Zeifang, Andrea Beck. A Low Mach Number IMEX Flux Splitting for the Level Set Ghost Fluid Method[J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 722-750.
1. An, H.B., Wen, J., Feng, T.:On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method. J. Comput. Appl. Math. 236(6), 1399-1409 (2011) 2. Ashgriz, N., Poo, J.:Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech. 221, 183-204 (1990) 3. Boger, M., Jaegle, F., Klein, R., Munz, C.D.:Coupling of compressible and incompressible flow regions using the multiple pressure variables approach. Math. Methods Appl. Sci. 38(3), 458-477 (2015) 4. Boger, M., Jaegle, F., Weigand, B., Munz, C.D.:A pressure-based treatment for the direct numerical simulation of compressible multi-phase flow using multiple pressure variables. Comput. Fluids 96, 338-349 (2014) 5. Boscarino, S., Russo, G., Scandurra, L.:All Mach number second order semi-implicit scheme for the Euler equations of gasdynamics. J. Sci. Comput. 77(2), 850-884 (2018) 6. Carpenter, M., Kennedy, C.:Fourth-order 2N-storage Runge-Kutta schemes. Tech. rep, NASA Langley Research Center (1994) 7. Chalons, C., Coquel, F., Kokh, S., Spillane, N.:Large time-step numerical scheme for the seven-equation model of compressible two-phase flows. In:Fořt, J., Fürst, J., Halama, J., Herbin, R., Hubert, F. (eds) Finite Volumes for Complex Applications VI Problems & Perspectives, Springer Proceedings in Mathematics, vol. 4, pp. 225-233. Springer, Berlin, Heidelberg (2011) 8. Chalons, C., Girardin, M., Kokh, S.:An all-regime Lagrange-projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes. J. Comput. Phys. 335, 885-904 (2017) 9. Chen, S.S., Yan, C., Xiang, X.H.:Effective low-Mach number improvement for upwind schemes. Comput. Math. Appl. 75(10), 3737-3755 (2018) 10. Chisholm, T.T., Zingg, D.W.:A Jacobian-free Newton-Krylov algorithm for compressible turbulent fluid flows. J. Comput. Phys. 228(9), 3490-3507 (2009) 11. Choquet, R., Erhel, J.:Newton-GMRES algorithm applied to compressible flows. Int. J. Numer. Methods Fluids 23(2), 177-190 (1996) 12. Cordier, F., Degond, P., Kumbaro, A.:An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations. J. Comput. Phys. 231, 5685-5704 (2012) 13. Degond, P., Tang, M.:All speed scheme for the low Mach number limit of the isentropic Euler equation. Commun. Comput. Phys. 10, 1-31 (2011) 14. Denner, F., van Wachem, B.G.:Numerical time-step restrictions as a result of capillary waves. J. Comput. Phys. 285, 24-40 (2015) 15. Denner, F., Xiao, C.N., van Wachem, B.G.:Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretisation. J. Comput. Phys. 367, 192-234 (2018) 16. Desjardins, O., Moureau, V., Pitsch, H.:An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227(18), 8395-8416 (2008) 17. Du Chéné, A., Min, C., Gibou, F.:Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes. J. Sci. Comput. 35(2/3), 114-131 (2008) 18. Duret, B., Canu, R., Reveillon, J., Demoulin, F.:A pressure based method for vaporizing compressible two-phase flows with interface capturing approach. Int. J. Multiph. Flow 108, 42-50 (2018) 19. Fechter, S.:Compressible multi-phase simulation at extreme conditions using a discontinuous Galerkin scheme. Ph.D. thesis, University of Stuttgart (2015) 20. Fechter, S., Jaegle, F., Schleper, V.:Exact and approximate Riemann solvers at phase boundaries. Comput. Fluids 75, 112-126 (2013) 21. Fechter, S., Munz, C.D.:A discontinuous Galerkin-based sharp-interface method to simulate threedimensional compressible two-phase flow. Int. J. Numer. Methods Fluids 78(7), 413-435 (2015) 22. Fechter, S., Munz, C.D., Rohde, C., Zeiler, C.:Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension. Comput. Fluids 169, 169-185 (2018) 23. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.:A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457-492 (1999) 24. Föll, F., Hitz, T., Müller, C., Munz, C.D., Dumbser, M.:On the use of tabulated equations of state for multi-phase simulations in the homogeneous equilibrium limit. Shock Waves 29(5), 769-793 (2019) 25. Frolov, R.:An efficient algorithm for the multicomponent compressible Navier-Stokes equations in low- and high-Mach number regimes. Comput. Fluids 178, 15-40 (2019) 26. Fuster, D., Popinet, S.:An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. J. Comput. Phys. 374, 752-768 (2018) 27. Gassner, G., Lörcher, F., Munz, C.D.:A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224(2), 1049-1063 (2007) 28. Gassner, G., Lörcher, F., Munz, C.D.:A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34(3), 260-286 (2008) 29. Ghosh, D., Constantinescu, E.M.:Semi-implicit time integration of atmospheric flows with characteristic-based flux partitioning. SIAM J. Sci. Comput. 38(3), A1848-A1875 (2016) 30. Haack, J., Jin, S., Liu, J.G.:An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations. Commun. Comput. Phys. 12, 955-980 (2012) 31. Henneaux, D., Schrooyen, P., Dias, B., Turchi, A., Chatelain, P., Magin, T.:Extended discontinuous Galerkin method for solving gas-liquid compressible flows with phase transition. In:AIAA Aviation Forum (2020) 32. Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.:Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86-93 (2012) 33. Hirt, C.W., Nichols, B.D.:Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201-225 (1981) 34. Hitz, T.:On the Riemann problem and the Navier-Stokes-Korteweg model for compressible multiphase flows. Ph.D. thesis, University of Stuttgart (2019) 35. Huber, G., Tanguy, S., Béra, J.C., Gilles, B.:A time splitting projection scheme for compressible two-phase flows. Application to the interaction of bubbles with ultrasound waves. J. Comput. Phys. 302, 439-468 (2015) 36. Jiang, G.S., Peng, D.:Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126-2143 (2000) 37. Jöns, S., Müller, C., Zeifang, J., Munz, C.D.:Recent advances and complex applications of the compressible ghost-fluid method. In:SEMA SIMAI Springer Series, Proceedings of Numhyp 2019. Springer (2020). Accepted 38. Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.:Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225(2), 1753- 1781 (2007) 39. Kennedy, C.A., Carpenter, M.H.:Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139-181 (2003) 40. Knoll, D.A., Keyes, D.E.:Jacobian-free Newton-Krylov methods:a survey of approaches and applications. J. Comput. Phys. 193, 357-397 (2004) 41. Kopriva, D.A.:Implementing Spectral Methods for Partial Differential Equations:Algorithms for Scientists and Engineers, 1st edn. Springer Publishing Company Incorporated, Springer, Dordrecht (2009) 42. Krais, N., Beck, A., Bolemann, T., Frank, H., Flad, D., Gassner, G., Hindenlang, F., Hoffmann, M., Kuhn, T., Sonntag, M., Munz, C.D.:FLEXI:a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws. Comput. Math. Appl. 81, 186-219 (2021) 43. Lalanne, B., Villegas, L.R., Tanguy, S., Risso, F.:On the computation of viscous terms for incompressible two-phase flows with level set/ghost fluid method. J. Comput. Phys. 301, 289-307 (2015) 44. Lamb, H.:Hydrodynamics. Cambridge University Press, Cambridge (1932) 45. Lee, J., Son, G.:A level-set method for ultrasound-driven bubble motion with a phase change. Numer. Heat Transf. Part A Appl. 71(9), 928-943 (2017) 46. Liu, W., Yuan, L., Shu, C.-W.:A conservative modification to the ghost fluid method for compressible multiphase flows. Commun. Comput. Phys. 10(4), 785 (2011) 47. Main, A., Farhat, C.:A second-order time-accurate implicit finite volume method with exact twophase Riemann problems for compressible multi-phase fluid and fluid-structure problems. J. Comput. Phys. 258, 613-633 (2014) 48. Marchandise, E., Geuzaine, P., Chevaugeon, N., Remacle, J.F.:A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics. J. Comput. Phys. 225(1), 949-974 (2007) 49. Merkle, C., Rohde, C.:The sharp-interface approach for fluids with phase change:Riemann problems and ghost fluid techniques. ESAIM Math. Model. Numer. Anal. 41(6), 1089-1123 (2007) 50. Müller, C., Hitz, T., Jöns, S., Zeifang, J., Chiocchetti, S., Munz, C.D.:Improvement of the levelset ghost-fluid method for the compressible Euler equations. In:Lamanna, G., Tonini, S., Cossali, G.E., Weigand, B. (eds) Droplet Interaction and Spray Processes. Springer, Heidelberg (2020) 51. Noelle, S., Bispen, G., Arun, K.R., Lukácová-Medvid'ová, M., Munz, C.D.:A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36, B989-B1024 (2014) 52. Olsson, E., Kreiss, G.:A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225-246 (2005) 53. Olsson, E., Kreiss, G., Zahedi, S.:A conservative level set method for two phase flow II. J. Comput. Phys. 225(1), 785-807 (2007) 54. Osher, S., Sethian, J.A.:Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12-49 (1988) 55. Peluchon, S., Gallice, G., Mieussens, L.:A robust implicit-explicit acoustic-transport splitting scheme for two-phase flows. J. Comput. Phys. 339, 328-355 (2017) 56. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.:A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410-438 (1999) 57. Perigaud, G., Saurel, R.:A compressible flow model with capillary effects. J. Comput. Phys. 209(1), 139-178 (2005) 58. Ray, B., Biswas, G., Sharma, A.:Oblique drop impact on deep and shallow liquid. Commun. Comput. Phys. 11(4), 1386-1396 (2012) 59. Schleper, V.:A HLL-type Riemann solver for two-phase flow with surface forces and phase transitions. Appl. Numer. Math. 108, 256-270 (2016) 60. Sonntag, M., Munz, C.D.:Shock capturing for discontinuous Galerkin methods using finite volume subcells. In:Fuhrmann, J., Mario, O., Christian, R. (eds) Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, pp. 945-953. Springer (2014) 61. Sonntag, M., Munz, C.D.:Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells. J. Sci. Comput. 70(3), 1262-1289 (2017) 62. Sussman, M., Smereka, P., Osher, S.:A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146-159 (1994) 63. Tanguy, S., Berlemont, A.:Application of a level set method for simulation of droplet collisions. Int. J. Multiph. Flow 31(9), 1015-1035 (2005) 64. Tavelli, M., Dumbser, M.:A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers. J. Comput. Phys. 341, 341-376 (2017) 65. Tiam Kapen, P., Ghislain, T.:A new flux splitting scheme based on Toro-Vazquez and HLL schemes for the Euler equations. J. Comput. Methods Phys. 2014, 827034 (2014) 66. Toro, E.F., Castro, C.E., Lee, B.J.:A novel numerical flux for the 3D Euler equations with general equation of state. J. Comput. Phys. 303, 80-94 (2015) 67. Toro, E.F., Vázquez-Cendón, M.E.:Flux splitting schemes for the Euler equations. Comput. Fluids 70, 1-12 (2012) 68. Vangelatos, S.:On the efficiency of implicit discontinuous Galerkin spectral element methods for the unsteady compressible Navier-Stokes equations. Ph.D. thesis, University of Stuttgart (2019) 69. Williamson, J.H.:Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 48-56 (1980) 70. Woodward, C.S., Gardner, D.J., Evans, K.J.:On the use of finite difference matrix-vector products in Newton-Krylov solvers for implicit climate dynamics with spectral elements. Proc. Comput. Sci. 51, 2036-2045 (2015) 71. Zeifang, J.:A discontinuous Galerkin method for droplet dynamics in weakly compressible flows. Ph.D. thesis, University of Stuttgart (2020) 72. Zeifang, J., Kaiser, K., Beck, A., Schütz, J., Munz, C.D.:Efficient high-order discontinuous Galerkin computations of low Mach number flows. Commun. Appl. Math. Comput. Sci. 13(2), 243-270 (2018) 73. Zeifang, J., Kaiser, K., Schütz, J., Massa, F.C., Beck, A.:An investigation of different splitting techniques for the isentropic Euler equations. In:Lamanna, G., Tonini, S., Cossali, G.E., Weigand, B. (eds) Droplet Interaction and Spray Processes. Fluid Mechanics and Its Applications, vol. 121, pp. 45-55. Springer, Heidelberg (2020) 74. Zeifang, J., Schütz, J., Kaiser, K., Beck, A., Lukácová-Medvid'ová, M., Noelle, S.:A novel full-Euler low Mach number IMEX splitting. Commun. Comput. Phys. 27, 292-320 (2020) |
[1] | Yanping Lin, Xiu Ye, Shangyou Zhang. A Mixed Finite-Element Method on Polytopal Mesh[J]. Communications on Applied Mathematics and Computation, 2022, 4(4): 1374-1385. |
[2] | Mahboub Baccouch. Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second-Order Elliptic Problems on Cartesian Grids[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 437-476. |
[3] | Gang Chen, Bernardo Cockburn, John R. Singler, Yangwen Zhang. Superconvergent Interpolatory HDG Methods for Reaction Difusion Equations II: HHO-Inspired Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 477-499. |
[4] | Xiaobing Feng, Thomas Lewis, Aaron Rapp. Dual-Wind Discontinuous Galerkin Methods for Stationary Hamilton-Jacobi Equations and Regularized Hamilton-Jacobi Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 563-596. |
[5] | Andreas Dedner, Tristan Pryer. Discontinuous Galerkin Methods for a Class of Nonvariational Problems[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 634-656. |
[6] | Will Pazner, Tzanio Kolev. Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp-Refnement[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 697-727. |
[7] | Vít Dolejší, Filip Roskovec. Goal-Oriented Anisotropic hp-Adaptive Discontinuous Galerkin Method for the Euler Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 143-179. |
[8] | Lina Zhao, Ming Fai Lam, Eric Chung. A Uniformly Robust Staggered DG Method for the Unsteady Darcy-Forchheimer-Brinkman Problem[J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 205-226. |
[9] | Aycil Cesmelioglu, Sander Rhebergen. A Compatible Embedded-Hybridized Discontinuous Galerkin Method for the Stokes-Darcy-Transport Problem[J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 293-318. |
[10] | Ahmed Al-Taweel, Yinlin Dong, Saqib Hussain, Xiaoshen Wang. A Weak Galerkin Harmonic Finite Element Method for Laplace Equation[J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 527-544. |
[11] | Ming Cui, Xiu Ye, Shangyou Zhang. A Modified Weak Galerkin Finite Element Method for the Biharmonic Equation on Polytopal Meshes[J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 91-105. |
[12] | Min Zhang, Yang Liu, Hong Li. High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Difusion Equation[J]. Communications on Applied Mathematics and Computation, 2020, 2(4): 613-640. |
[13] | Xiangcheng Zheng, V. J. Ervin, Hong Wang. An Indirect Finite Element Method for Variable-Coefcient Space-Fractional Difusion Equations and Its Optimal-Order Error Estimates[J]. Communications on Applied Mathematics and Computation, 2020, 2(1): 147-162. |
[14] | Paola Antonietti, Claudio Canuto, Marco Verani. An Adaptive hp-DG-FE Method for Elliptic Problems: Convergence and Optimality in the 1D Case[J]. Communications on Applied Mathematics and Computation, 2019, 1(3): 309-331. |
[15] | Paola Gervasio, Alfio Quarteroni. The INTERNODES Method for Non-conforming Discretizations of PDEs[J]. Communications on Applied Mathematics and Computation, 2019, 1(3): 361-401. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||