Communications on Applied Mathematics and Computation ›› 2022, Vol. 4 ›› Issue (2): 697-727.doi: 10.1007/s42967-021-00136-3
Will Pazner, Tzanio Kolev
收稿日期:
2020-08-31
修回日期:
2021-02-06
出版日期:
2022-06-20
发布日期:
2022-04-29
通讯作者:
Will Pazner
E-mail:pazner1@llnl.gov
基金资助:
Will Pazner, Tzanio Kolev
Received:
2020-08-31
Revised:
2021-02-06
Online:
2022-06-20
Published:
2022-04-29
Contact:
Will Pazner
E-mail:pazner1@llnl.gov
Supported by:
摘要: In this paper, we develop subspace correction preconditioners for discontinuous Galerkin (DG) discretizations of elliptic problems with hp-refnement. These preconditioners are based on the decomposition of the DG fnite element space into a conforming subspace, and a set of small nonconforming edge spaces. The conforming subspace is preconditioned using a matrix-free low-order refned technique, which in this work, we extend to the hp-refnement context using a variational restriction approach. The condition number of the resulting linear system is independent of the granularity of the mesh h, and the degree of the polynomial approximation p. The method is amenable to use with meshes of any degree of irregularity and arbitrary distribution of polynomial degrees. Numerical examples are shown on several test cases involving adaptively and randomly refned meshes, using both the symmetric interior penalty method and the second method of Bassi and Rebay (BR2).
中图分类号:
Will Pazner, Tzanio Kolev. Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp-Refnement[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 697-727.
Will Pazner, Tzanio Kolev. Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp-Refnement[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 697-727.
1.Anderson, R., et al.:MFEM:a modular fnite element methods library.Comput.Math.Appl.81, 42-74 (2021).https://doi.org/10.1016/j.camwa.2020.06.009 2.Antonietti, P.F., Ayuso, B.:Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems:non-overlapping case.ESAIM:Mathematical Modelling and Numerical Analysis 41(1), 21-54 (2007) https://doi.org/10.1051/m2an:2007006 3.Antonietti, P.F., Giani, S., Houston, P.:Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains.J.Sci.Comput.60(1), 203-227 (2013) https://doi.org/10.1007/s10915-013-9792-y 4.Antonietti, P.F., Houston, P.:A class of domain decomposition preconditioners for hp-discontinuous Galerkin fnite element methods.J.Sci.Comput.46(1), 124-149 (2010) https://doi.org/10.1007/s10915-010-9390-1 5.Antonietti, P.F., Houston, P., Pennesi, G., Suli, E.:An agglomeration-based massively parallel nonoverlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids.Math.Comput.89(325), 2047-2083 (2020) https://doi.org/10.1090/mcom/3510 6.Antonietti, P.F., Houston, P., Smears, I.:A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for hp-version discontinuous Galerkin methods.Int.J.Numer.Anal.Model.13(4), 513-524 (2016) 7.Antonietti, P.F., Melas, L.:Algebraic multigrid schemes for high-order nodal discontinuous Galerkin methods.SIAM J.Sci.Comput.42(2), A1147-A1173 (2020) https://doi.org/10.1137/18m12 04383 8.Antonietti, P.F., Sarti, M., Verani, M.:Multigrid algorithms for hp-discontinuous Galerkin discretizations of elliptic problems.SIAM J.Numer.Anal.53(1), 598-618 (2015) https://doi.org/10.1137/130947015 9.Antonietti, P.F., Sarti, M., Verani, M., Zikatanov, L.T.:A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems.J.Sci.Comput.70(2), 608-630 (2016) https://doi.org/10.1007/s10915-016-0259-9 10.Arnold, D.N.:An interior penalty fnite element method with discontinuous elements.SIAM J.Numer.Anal.19(4), 742-760 (1982) https://doi.org/10.1137/0719052 11.Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.:Unifed analysis of discontinuous Galerkin methods for elliptic problems.SIAM J.Numer.Anal.39(5), 1749-1779 (2002) https://doi.org/10.1137/S0036142901384162 12.Bassi, F., Rebay, S.:A high order discontinuous Galerkin method for compressible turbulent fows.In:Cockburn, B., Karniadakis, G.E., Shu, C.-W.(eds.) Discontinuous Galerkin Methods, vol.11, pp.77-88.Springer, Berlin (2000) https://doi.org/10.1007/978-3-642-59721-3_4 13.Bastian, P., Blatt, M., Scheichl, R.:Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems.Numer.Linear Algebra Appl.19(2), 367-388 (2012) https://doi.org/10.1002/nla.1816 14.Bernardi, C., Maday, Y., Rapetti, F.:Basics and some applications of the mortar element method.GAMM-Mitteilungen 28(2), 97-123 (2005) https://doi.org/10.1002/gamm.201490020 15.Braess, D.:Finite Elements:Theory, Fast Solvers, and Applications in Solid Mechanics.Cambridge University Press, Cambridge (2007) https://doi.org/10.1017/cbo9780511618635 16.Brix, K., Campos Pinto, M., Canuto, C., Dahmen, W.:Multilevel preconditioning of discontinuous Galerkin spectral element methods.Part I:geometrically conforming meshes.IMA J.Numer.Anal.35(4), 1487-1532 (2014).https://doi.org/10.1093/imanum/dru053 17.Brix, K., Pinto, M.C., Dahmen, W.:A multilevel preconditioner for the interior penalty discontinuous Galerkin method.SIAM J.Numer.Anal.46(5), 2742-2768 (2008) https://doi.org/10.1137/07069691x 18.Burman, E., Ern, A.:Continuous interior penalty hp-fnite element methods for advection and advection-difusion equations.Math.Comput.76(259), 1119-1141 (2007) https://doi.org/10.1090/s0025-5718-07-01951-5 19.Canuto, C.:Stabilization of spectral methods by fnite element bubble functions.Comput.Methods Appl.Mech.Eng.116(1/2/3/4), 13-26 (1994) 20.Canuto, C., Gervasio, P., Quarteroni, A.:Finite-element preconditioning of G-NI spectral methods.SIAM J.Sci.Comput.31(6), 4422-4451 (2010) https://doi.org/10.1137/090746367 21.Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.:Spectral Methods:Fundamentals in Single Domains.Springer, Berlin (2006) https://doi.org/10.1007/978-3-540-30726-6 22.Canuto, C., Quarteroni, A.:Approximation results for orthogonal polynomials in Sobolev spaces.Math.Comput.38(157), 67-86 (1982) https://doi.org/10.1090/s0025-5718-1982-0637287-3 23.Castillo, P.:Performance of discontinuous Galerkin methods for elliptic PDEs.SIAM J.Sci.Comput.24(2), 524-547 (2002) https://doi.org/10.1137/s1064827501388339 24.Červený, J., Dobrev, V., Kolev, T.:Nonconforming mesh refnement for high-order fnite elements.SIAM J.Sci.Comput.41(4), C367-C392 (2019) https://doi.org/10.1137/18m1193992 25.Chung, E.T., Kim, H.H., Widlund, O.B.:Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method.SIAM J.Numer.Anal.51(1), 47-67 (2013) https://doi.org/10.1137/110849432 26.Cockburn, B., Shu, C.-W.:The local discontinuous Galerkin method for time-dependent convection difusion systems.SIAM J.Numer.Anal.35(6), 2440-2463 (1998) https://doi.org/10.1137/s0036 142997316712 27.Cockburn, B., Shu, C.-W.:Runge-Kutta discontinuous Galerkin methods for convection-dominated problems.J.Sci.Comput.16(3), 173-261 (2001) https://doi.org/10.1023/a:1012873910884 28.Demkowicz, L., Rachowicz, W., Devloo, P.:A fully automatic hp-adaptivity.J.Sci.Comput.17(1/2/3/4), 117-142 (2002) https://doi.org/10.1023/a:1015192312705 29.Dobrev, V.A., Lazarov, R.D., Vassilevski, P.S., Zikatanov, L.T.:Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations.Numer.Linear Algebra Appl.13(9), 753-770 (2006) https://doi.org/10.1002/nla.504 30.Dryja, M., Widlund, O.B.:Some domain decomposition algorithms for elliptic problems.In:Kincaid, D.R., Hayes, L.J.(eds.) Iterative Methods for Large Linear Systems, pp.273-291.Academic Press, New York (1990).https://doi.org/10.1016/B978-0-12-407475-0.50022-X 31.Fehn, N., Wall, W.A., Kronbichler, M.:On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations.J.Comput.Phys.351, 392-421 (2017) https://doi.org/10.1016/j.jcp.2017.09.031 32.Fortunato, D., Rycroft, C.H., Saye, R.:Efcient operator-coarsening multigrid schemes for local discontinuous Galerkin methods.SIAM J.Sci.Comput.41(6), A3913-A3937 (2019) https://doi.org/10.1137/18m1206357 33.Gopalakrishnan, J., Kanschat, G.:A multilevel discontinuous Galerkin method.Numer.Math.95(3), 527-550 (2003) https://doi.org/10.1007/s002110200392 34.Griebel, M., Oswald, P.:On the abstract theory of additive and multiplicative Schwarz algorithms.Numer.Math.70(2), 163-180 (1995) https://doi.org/10.1007/s002110050115 35.Haut, T.S., Southworth, B.S., Maginot, P.G., Tomov, V.Z.:Difusion synthetic acceleration preconditioning for discontinuous Galerkin discretizations of SN transport on high-order curved meshes.SIAM J.Sci.Comput.42(5), B1271-B1301 (2020) https://doi.org/10.1137/19m124993x 36.Henson, V.E., Yang, U.M.:BoomerAMG:a parallel algebraic multigrid solver and preconditioner.Appl.Numer.Math.41(1), 155-177 (2002) https://doi.org/10.1016/s0168-9274(01)00115-5 37.Houston, P., Schötzau, D., Wihler, T.P.:Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems.Math.Models Methods Appl.Sci.17(01), 33-62 (2007) https://doi.org/10.1142/s0218202507001826 38.Houston, P., Süli, E., Wihler, T.P.:A posteriori error analysis of hp-version discontinuous Galerkin fnite-element methods for second-order quasi-linear elliptic PDEs.IMA J.Numer.Anal.28(2), 245-273 (2007) https://doi.org/10.1093/imanum/drm009 39.Kanschat, G.:Multilevel methods for discontinuous Galerkin FEM on locally refned meshes.Comput.Struct.82(28), 2437-2445 (2004) https://doi.org/10.1016/j.compstruc.2004.04.015 40.Karakashian, O.A., Pascal, F.:A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems.SIAM J.Numer.Anal.41(6), 2374-2399 (2003) https://doi.org/10.1137/s0036142902405217 41.Melenk, J., Gerdes, K., Schwab, C.:Fully discrete hp-fnite elements:fast quadrature.Comput.Methods Appl.Mech.Eng.190(32/33), 4339-4364 (2001) https://doi.org/10.1016/s0045-7825(00)00322-4 42.MFEM:Modular Finite Element Methods[Software].www.mfem.org https://doi.org/10.11578/dc.20171025.1248 43.Orszag, S.A.:Spectral methods for problems in complex geometries.J.Comput.Phys.37(1), 70-92 (1980) https://doi.org/10.1016/0021-9991(80)90005-4 44.Oswald, P.:On a BPX-preconditioner for P1 elements.Computing 51(2), 125-133 (1993) https://doi.org/10.1007/bf02243847 45.Pazner, W.:Efcient low-order refned preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods.J.Sci.Comput.42(5), A3055-A3083 (2020) 46.Peraire, J., Persson, P.-O.:The compact discontinuous Galerkin (CDG) method for elliptic problems.SIAM J.Sci.Comput.30(4), 1806-1824 (2008) https://doi.org/10.1137/070685518 47.Pazner, W., Persson, P.-O.:Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods.J.Comput.Phys.354, 344-369 (2018) https://doi.org/10.1016/j.jcp.2017.10.030 48.Perugia, I., Schötzau, D.:An hp-analysis of the local discontinuous Galerkin method for difusion problems.J.Sci.Comput.17(1/2/3/4), 561-571 (2002) https://doi.org/10.1023/a:1015118613130 49.Shahbazi, K.:An explicit expression for the penalty parameter of the interior penalty method.J.Comput.Phys.205(2), 401-407 (2005) https://doi.org/10.1016/j.jcp.2004.11.017 50.Shahbazi, K., Fischer, P.F., Ethier, C.R.:A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations.J.Comput.Phys.222(1), 391-407 (2007).https://doi.org/10.1016/j.jcp.2006.07.029 51.Šolín, P., Červený, J., Doležel, I.:Arbitrary-level hanging nodes and automatic adaptivity in the hpFEM.Math.Comput.Simul.77(1), 117-132 (2008) https://doi.org/10.1016/j.matcom.2007.02.011 52.Szabó, B., Babuška, I.:Wiley Series in Computational Mechanics.Finite Element Analysis.Wiley, Amsterdam (1991) 53.Toselli, A., Widlund, O.B.:Domain Decomposition Methods-Algorithms and Theory.Springer Series in Computational Mathematics.Springer-Verlag, Berlin/Heidelberg (2005).https://doi.org/10.1007/b137868 54.Wang, Z., et al.:High-order CFD methods:current status and perspective.Int.J.Numer.Meth.Fluids 72(8), 811-845 (2013) https://doi.org/10.1002/fd.3767 55.Wihler, T., Frauenfelder, P., Schwab, C.:Exponential convergence of the hp-DGFEM for difusion problems.Comput.Math.Appl.46(1), 183-205 (2003) https://doi.org/10.1016/s0898-1221(03) 90088-5 56.Xu, J.:Iterative methods by space decomposition and subspace correction.SIAM Rev.34(4), 581-613 (1992) https://doi.org/10.1137/1034116 57.Xu, J.:The method of subspace corrections.J.Comput.Appl.Math.128(1/2), 335-362 (2001) https://doi.org/10.1016/s0377-0427(00)00518-5 58.Xu, J., Zikatanov, L.:The method of alternating projections and the method of subspace corrections in Hilbert space.J.Am.Math.Soc.15(03), 573-598 (2002) https://doi.org/10.1090/s0894-0347-02-00398-3 59.Zhu, L., Giani, S., Houston, P., Schötzau, D.:Energy norm a posteriori error estimation for hp-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions.Math.Models Methods Appl.Sci.21(02), 267-306 (2011) https://doi.org/10.1142/s0218202511005052 60.Zhu, L., Schötzau, D.:A robust a posteriori error estimate for hp-adaptive DG methods for convectiondifusion equations.IMA J.Numer.Anal.31(3), 971-1005 (2010) https://doi.org/10.1093/imanum/drp038 |
[1] | Xiaozhou Li. How to Design a Generic Accuracy-Enhancing Filter for Discontinuous Galerkin Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 759-782. |
[2] | Lorenzo Botti, Daniele A. Di Pietro. p-Multilevel Preconditioners for HHO Discretizations of the Stokes Equations with Static Condensation[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 783-822. |
[3] | Ohannes A. Karakashian, Michael M. Wise. A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 823-854. |
[4] | Lu Zhang, Daniel Appelö, Thomas Hagstrom. Energy-Based Discontinuous Galerkin Difference Methods for Second-Order Wave Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 855-879. |
[5] | Poorvi Shukla, J. J. W. van der Vegt. A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 904-944. |
[6] | Dinshaw S. Balsara, Roger Käppeli. Von Neumann Stability Analysis of DG-Like and PNPM-Like Schemes for PDEs with Globally Curl-Preserving Evolution of Vector Fields[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 945-985. |
[7] | Lukáš Vacek, Václav Kučera. Discontinuous Galerkin Method for Macroscopic Traffic Flow Models on Networks[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 986-1010. |
[8] | Jiawei Sun, Shusen Xie, Yulong Xing. Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 381-416. |
[9] | Jennifer K. Ryan. Capitalizing on Superconvergence for More Accurate Multi-Resolution Discontinuous Galerkin Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 417-436. |
[10] | Mahboub Baccouch. Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second-Order Elliptic Problems on Cartesian Grids[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 437-476. |
[11] | Gang Chen, Bernardo Cockburn, John R. Singler, Yangwen Zhang. Superconvergent Interpolatory HDG Methods for Reaction Difusion Equations II: HHO-Inspired Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 477-499. |
[12] | Xue Hong, Yinhua Xia. Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Methods for KdV Type Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 530-562. |
[13] | Xiaobing Feng, Thomas Lewis, Aaron Rapp. Dual-Wind Discontinuous Galerkin Methods for Stationary Hamilton-Jacobi Equations and Regularized Hamilton-Jacobi Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 563-596. |
[14] | Andreas Dedner, Tristan Pryer. Discontinuous Galerkin Methods for a Class of Nonvariational Problems[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 634-656. |
[15] | Andreas Dedner, Robert Klöfkorn. Extendible and Efcient Python Framework for Solving Evolution Equations with Stabilized Discontinuous Galerkin Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 657-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||