Communications on Applied Mathematics and Computation ›› 2022, Vol. 4 ›› Issue (2): 657-696.doi: 10.1007/s42967-021-00134-5
Andreas Dedner1, Robert Klöfkorn2
收稿日期:
2020-09-25
修回日期:
2021-03-18
出版日期:
2022-06-20
发布日期:
2022-04-29
通讯作者:
Andreas Dedner, Robert Klöfkorn
E-mail:robertk@math.lu.se;A.S.Dedner@warwick.ac.uk
Andreas Dedner1, Robert Klöfkorn2
Received:
2020-09-25
Revised:
2021-03-18
Online:
2022-06-20
Published:
2022-04-29
Contact:
Andreas Dedner, Robert Klöfkorn
E-mail:robertk@math.lu.se;A.S.Dedner@warwick.ac.uk
摘要: This paper discusses a Python interface for the recently published Dune-Fem-DG module which provides highly efcient implementations of the discontinuous Galerkin (DG) method for solving a wide range of nonlinear partial diferential equations (PDEs). Although the C++ interfaces of Dune-Fem-DG are highly fexible and customizable, a solid knowledge of C++ is necessary to make use of this powerful tool. With this work, easier user interfaces based on Python and the unifed form language are provided to open Dune-Fem-DG for a broader audience. The Python interfaces are demonstrated for both parabolic and frst-order hyperbolic PDEs.
中图分类号:
Andreas Dedner, Robert Klöfkorn. Extendible and Efcient Python Framework for Solving Evolution Equations with Stabilized Discontinuous Galerkin Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 657-696.
Andreas Dedner, Robert Klöfkorn. Extendible and Efcient Python Framework for Solving Evolution Equations with Stabilized Discontinuous Galerkin Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 657-696.
1.Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.:Unifed form language:adomainspecifc language for weak formulations of partial diferential equations.CoRR abs/1211.4047 (2012).arxiv:1211.4047 2.Andersson, C., Führer, C., Åkesson, J.:Assimulo:a unifed framework for ODE solvers.Math.Comput.Simul.116, 26-43 (2015).https://doi.org/10.1016/j.matcom.2015.04.007 3.Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.:PETSc users manual.Tech.Rep.ANL-95/11-Revision 3.14, Argonne National Laboratory (2020).https://www.mcs.anl.gov/petsc 4.Bangerth, W., Hartmann, R., Kanschat, G.:deal.II-A general-purpose object-oriented fnite element library.ACM Trans.Math.Softw.33(4), 24/1-24/27 (2007).https://doi.org/10.1145/1268776.1268779 5.Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.:A generic grid interface for parallel and adaptive scientifc computing.Part II:implementation and tests in DUNE.Computing 82(2/3), 121-138 (2008).https://doi.org/10.1007/s00607-008-0004-9 6.Bastian, P., Blatt, M., Dedner, M., Dreier, N.A., Engwer, Ch., Fritze, R., Gräser, C., Grüninger, C., Kempf, D., Klöfkorn, R., Ohlberger, M., Sander, O.:The DUNE framework:basic concepts and recent developments.Comput.Math.Appl.81, 75-112 (2021).https://doi.org/10.1016/j.camwa.2020.06.007 7.Birken, P., Gassner, G.J., Versbach, L.M.:Subcell fnite volume multigrid preconditioning for highorder discontinuous Galerkin methods.Int.J.Comput.Fluid Dyn.33(9), 353-361 (2019).https://doi.org/10.1080/10618562.2019.1667983 8.Brdar, S., Baldauf, M., Dedner, A., Klöfkorn, R.:Comparison of dynamical cores for NWP models:comparison of COSMO and DUNE.Theoretical Comput.Fluid Dyn.27(3/4), 453-472 (2013).https://doi.org/10.1007/s00162-012-0264-z 9.Brdar, S., Dedner, A., Klöfkorn, R.:Compact and stable discontinuous Galerkin methods for convection-difusion problems.SIAM J.Sci.Comput.34(1), 263-282 (2012).https://doi.org/10.1137/10081 7528 10.Chen, L., Li, R.:An integrated linear reconstruction for fnite volume scheme on unstructured grids.J.Sci.Comput.68, 1172-1197 (2016).https://doi.org/10.1007/s10915-016-0173-1 11.Chen, T., Shu, C.-W.:Review article:review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes.CSIAM Trans.Appl.Math.1(1), 1-52 (2020).https://doi.org/10.4208/csiam-am.2020-0003 12.Cheng, Y., Li, F., Qiu, J., Xu, L.:Positivity-preserving DG and central DG methods for ideal MHD equations.J.Comput.Phys.238, 255-280 (2013).https://doi.org/10.1016/j.jcp.2012.12.019 13.Cockburn, B., Shu, C.-W.:Runge-Kutta discontinuous Galerkin methods for convection-dominated problems.J.Sci.Comput.16(3), 173-261 (2001) 14.Dedner, A., Girke, S., Klöfkorn, R., Malkmus, T.:The DUNE-FEM-DG module.ANS (2017).https://doi.org/10.11588/ans.2017.1.28602 15.Dedner, A., Kane, B., Klöfkorn, R., Nolte, M.:Python framework for hp-adaptive discontinuous Galerkin methods for two-phase fow in porous media.AMM 67, 179-200 (2019).https://doi.org/10.1016/j.apm.2018.10.013 16.Dedner, A., Kloefkorn, R., Nolte, M.:Python bindings for the DUNE-FEM module (2020).https://doi.org/10.5281/zenodo.3706994 17.Dedner, A., Klöfkorn, R.:A generic stabilization approach for higher order discontinuous Galerkin methods for convection dominated problems.J.Sci.Comput.47(3), 365-388 (2011).https://doi.org/10.1007/s10915-010-9448-0 18.Dedner, A., Klöfkorn, R.:The DUNE-FEM-DG Module.https://gitlab.dune-project.org/dune-fem/dune-fem-dg (2019) 19.Dedner, A., Klöfkorn, R.:A Python framework for solving advection-difusion problems.In:Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J.(eds) Finite Volumes for Complex Applications IX-Methods, Theoretical Aspects, Examples, pp.695-703.Springer International Publishing, Cham (2020) 20.Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.:A generic interface for parallel and adaptive scientifc computing:abstraction principles and the DUNE-FEM module.Computing 90(3/4), 165-196 (2010).https://doi.org/10.1007/s00607-010-0110-3 21.Dedner, A., Makridakis, C., Ohlberger, M.:Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws.SIAM J.Numer.Anal.45(2), 514-538 (2007).https://doi.org/10.1137/050624248 22.Dedner, A., Nolte, M.:Construction of local fnite element spaces using the generic reference elements.In:Dedner, A., Flemisch, B., Klöfkorn, R.(eds) Advances in DUNE, pp.3-16.Springer, Berlin, Heidelberg (2012).https://doi.org/10.1007/978-3-642-28589-9_1 23.Dedner, A., Nolte, M.:The Dune-Python Module.CoRR abs/1807.05252 (2018).arxiv:1807.05252 24.Discacciati, N., Hesthaven, J.S., Ray, D.:Controlling oscillations in high-order discontinuous Galerkin schemes using artifcial viscosity tuned by neural networks.J.Comput.Phys.409, 109-304 (2020).https://doi.org/10.1016/j.jcp.2020.109304 25.Dolejší, V., Feistauer, M., Schwab, C.:On some aspects of the discontinuous Galerkin fnite element method for conservation laws.Math.Comput.Simul.61(3), 333-346 (2003).https://doi.org/10.1016/S0378-4754(02)00087-3 26.Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.:A unifed framework for the construction of one-step fnite volume and discontinuous Galerkin schemes on unstructured meshes.J.Comput.Phys.227(18), 8209-8253 (2008).https://doi.org/10.1016/j.jcp.2008.05.025 27.The Feel++ Consortium:The Feel++ Book (2015).https://www.gitbook.com/book/feelpp/feelpp-book 28.Feistauer, M., Kučera, V.:A new technique for the numerical solution of the compressible Euler equations with arbitrary Mach numbers.In:Benzoni-Gavage, S., Serre, D.(eds) Hyperbolic Problems:Theory, Numerics and Applications, pp.523-531.Springer, Berlin, Heidelberg (2008) 29.Gottlieb, S., Shu, C.-W., Tadmor, E.:Strong stability-preserving high-order time discretization methods.SIAM Rev.43(1), 89-112 (2001).https://doi.org/10.1137/S003614450036757X 30.Guermond, J.L., Pasquetti, R., Popov, B.:Entropy viscosity method for nonlinear conservation laws.J.Comput.Phys.230(11), 4248-4267 (2011).https://doi.org/10.1016/j.jcp.2010.11.043.(Special issue High Order Methods for CFD Problems) 31.Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.:Explicit discontinuous Galerkin methods for unsteady problems.Comput.Fluids 61, 86-93 (2012).https://doi.org/10.1016/j.compfuid.2012.03.006 32.Hönig, J., Koch, M., Rüde, U., Engwer, C., Köstler, H.:Unifed generation of DG-kernels for diferent HPC frameworks.In:Foster, I., Joubert, G.R., Kucera, L., Nagel, W.E., Peters F.(eds) Advances in Parallel Computing, vol.36, pp.376-386.IOS Press BV (2020).https://doi.org/10.3233/APC200062 33.Houston, P., Sime, N.:Automatic symbolic computation for discontinuous Galerkin fnite element methods.SIAM J.Sci.Comput.40(3), C327-C357 (2018).https://doi.org/10.1137/17M1129751 34.Karniadakis, G., Sherwin, S.:Spectral/hp Element Methods for Computational Fluid Dynamics.Oxford University Press, New York (2005).http://www.nektar.info/ 35.Ketcheson, D.I.:Highly efcient strong stability-preserving Runge-Kutta methods with low-storage implementations.SIAM J.Sci.Comput.30(4), 2113-2136 (2008).https://doi.org/10.1137/07070485X 36.Klieber, W., Rivière, B.:Adaptive simulations of two-phase fow by discontinuous Galerkin methods.Comput.Methods Appl.Mech.Eng.196(1/2/3), 404-419 (2006).https://doi.org/10.1016/j.cma.2006.05.007 37.Klöckner, A., Warburton, T., Hesthaven, J.S.:Viscous shock capturing in a time-explicit discontinuous Galerkin method.Math.Model.Nat.Phenom.6(3), 57-83 (2011).https://doi.org/10.1051/mmnp/20116303 38.Klöfkorn, R.:Efcient matrix-free implementation of discontinuous Galerkin methods for compressible fow problems.In:Handlovicova, A.et al.(eds) Proceedings of the ALGORITMY 2012, pp.11-21.Slovak University of Technology in Bratislava, Publishing House of STU, Slovakia (2012) 39.Klöfkorn, R., Kvashchuk, A., Nolte, M.:Comparison of linear reconstructions for second-order fnite volume schemes on polyhedral grids.Comput.Geosci.21(5), 909-919 (2017).https://doi.org/10.1007/s10596-017-9658-8 40.Knoll, D.A., Keyes, D.E.:Jacobian-free Newton-Krylov methods:a survey of approaches and applications.J.Comput.Phys.193(2), 357-397 (2004) 41.Kopriva, D.A., Gassner, G.:On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods.J.Sci.Comput.44, 136-155 (2010).https://doi.org/10.1007/s10915-010-9372-3 42.Kopriva, D.A., Woodruf, S.L., Hussaini, M.Y.:Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method.Int.J.Numer.Methods Eng.53(1), 105-122 (2002).https://doi.org/10.1002/nme.394 43.Krivodonova, L., Xin, J., Remacle, J.F., Chevaugeon, N., Flaherty, J.E.:Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws.Appl.Numer.Math.48(3/4), 323-338 (2004).https://doi.org/10.1016/j.apnum.2003.11.002 44.Logg, A., Mardal, K.A., Wells, G.:Automated Solution of Diferential Equations by the Finite Element Method:the FEniCS Book.Springer Publishing Company Incorporated, Berlin (2012) 45.Mandli, K.T., Ahmadia, A.J., Berger, M., Calhoun, D., George, D.L., Hadjimichael, Y., Ketcheson, D.I., Lemoine, G.I., LeVeque, R.J.:Clawpack:building an open source ecosystem for solving hyperbolic PDEs.Peer J.Comput.Sci.2, e68 (2016).https://doi.org/10.7717/peerj-cs.68 46.May, S., Berger, M.:Two-dimensional slope limiters for fnite volume schemes on non-coordinatealigned meshes.SIAM J.Sci.Comput.35(5), A2163-A2187 (2013).https://doi.org/10.1137/12087 5624 47.Persson, P.O., Peraire, J.:Sub-cell shock capturing for discontinuous Galerkin methods.In:44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-0112, Reno, Nevada (2006).https://doi.org/10.2514/6.2006-112 48.Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T., Bercea, G.T., Markall, G.R., Kelly, P.H.J.:Firedrake:automating the fnite element method by composing abstractions.ACM Trans.Math.Softw.43(3), 24/1-24/7 (2016).https://doi.org/10.1145/2998441 49.Schuster, D., Brdar, S., Baldauf, M., Dedner, A., Klöfkorn, R., Kröner, D.:On discontinuous Galerkin approach for atmospheric fow in the mesoscale with and without moisture.Meteorologische Zeitschrift 23(4), 449-464 (2014).https://doi.org/10.1127/0941-2948/2014/0565 50.Shu, C.-W.:High order WENO and DG methods for time-dependent convection-dominated PDEs:a brief survey of several recent developments.J.Comput.Phys.316, 598-613 (2016).https://doi.org/10.1016/j.jcp.2016.04.030 51.Wallwork, J.G., Barral, N., Kramer, S.C., Ham, D.A., Piggott, M.D.:Goal-oriented error estimation and mesh adaptation for shallow water modelling.SN Appl.Sci.2, 1053 (2020).https://doi.org/10.1007/s42452-020-2745-9 52.Zhang, X., Shu, C.-W.:On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes.J.Comput.Phys.229(23), 8918-8934 (2010).https://doi.org/10.1016/j.jcp.2010.08.016 |
[1] | Xiaozhou Li. How to Design a Generic Accuracy-Enhancing Filter for Discontinuous Galerkin Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 759-782. |
[2] | Lorenzo Botti, Daniele A. Di Pietro. p-Multilevel Preconditioners for HHO Discretizations of the Stokes Equations with Static Condensation[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 783-822. |
[3] | Ohannes A. Karakashian, Michael M. Wise. A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 823-854. |
[4] | Lu Zhang, Daniel Appelö, Thomas Hagstrom. Energy-Based Discontinuous Galerkin Difference Methods for Second-Order Wave Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 855-879. |
[5] | Hendrik Ranocha, Gregor J. Gassner. Preventing Pressure Oscillations Does Not Fix Local Linear Stability Issues of Entropy-Based Split-Form High-Order Schemes[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 880-903. |
[6] | Poorvi Shukla, J. J. W. van der Vegt. A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 904-944. |
[7] | Dinshaw S. Balsara, Roger Käppeli. Von Neumann Stability Analysis of DG-Like and PNPM-Like Schemes for PDEs with Globally Curl-Preserving Evolution of Vector Fields[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 945-985. |
[8] | Lukáš Vacek, Václav Kučera. Discontinuous Galerkin Method for Macroscopic Traffic Flow Models on Networks[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 986-1010. |
[9] | Jiawei Sun, Shusen Xie, Yulong Xing. Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 381-416. |
[10] | Jennifer K. Ryan. Capitalizing on Superconvergence for More Accurate Multi-Resolution Discontinuous Galerkin Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 417-436. |
[11] | Mahboub Baccouch. Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second-Order Elliptic Problems on Cartesian Grids[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 437-476. |
[12] | Gang Chen, Bernardo Cockburn, John R. Singler, Yangwen Zhang. Superconvergent Interpolatory HDG Methods for Reaction Difusion Equations II: HHO-Inspired Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 477-499. |
[13] | Xue Hong, Yinhua Xia. Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Methods for KdV Type Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 530-562. |
[14] | Xiaobing Feng, Thomas Lewis, Aaron Rapp. Dual-Wind Discontinuous Galerkin Methods for Stationary Hamilton-Jacobi Equations and Regularized Hamilton-Jacobi Equations[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 563-596. |
[15] | Andreas Dedner, Tristan Pryer. Discontinuous Galerkin Methods for a Class of Nonvariational Problems[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 634-656. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||