Communications on Applied Mathematics and Computation ›› 2022, Vol. 4 ›› Issue (1): 293-318.doi: 10.1007/s42967-020-00115-0
Previous Articles Next Articles
Aycil Cesmelioglu1, Sander Rhebergen2
Received:
2020-04-27
Revised:
2020-11-18
Online:
2022-03-20
Published:
2022-03-01
Contact:
Sander Rhebergen, Aycil Cesmelioglu
E-mail:srheberg@uwaterloo.ca;cesmelio@oakland.edu
CLC Number:
Aycil Cesmelioglu, Sander Rhebergen. A Compatible Embedded-Hybridized Discontinuous Galerkin Method for the Stokes-Darcy-Transport Problem[J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 293-318.
1. Bainov, D.D., Simeonov, P.S.:Integral Inequalities and applications, Springer Series in Mathematics and Its Applications, vol. 57. Springer Netherlands, Dordrecht (1992) 2. Beavers, G.S., Joseph, D.D.:Boundary conditions at a naturally impermeable wall. J. Fluid Mech. 30(1), 197-207 (1967). https://doi.org/10.1017/S0022112067001375 3. Brenner, S.C., Scott, L.R.:The Mathematical Theory of Finite Element Methods, 3rd edn. Springer Series Texts in Applied Mathematics, Springer Science+Business Media, LLC (2008) 4. Brooks, A.N., Hughes, T.J.R.:Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation. Comput. Methods Appl. Mech. Engrg. 32(1/2/3), 199-259 (1982). https://doi.org/10.1016/0045-7825(82)90071-8 5. Burman, E., Hansbo, P.:Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem. Numer. Meth. Part. Differ. Equat. 21(5), 986-997 (2005). https://doi.org/10.1002/num.20076 6. Camano, J., Gatica, G.N., Oyarzúa, R., Ruiz-Baier, R., Venegas, P.:New fully-mixed finite element methods for the Stokes-Darcy coupling. Comput. Method. Appl. M. 295, 362-395 (2015). https://doi.org/10.1016/j.cma.2015.07.007 7. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.:Finite element approximations for StokesDarcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47(6), 4239-4256 (2010). https://doi.org/10.1137/080731542 8. Cesmelioglu, A., Rhebergen, S., Wells, G.N.:An embedded-hybridized discontinuous Galerkin method for the coupled Stokes-Darcy system. J. Comput. Appl. Math. 367, 112476(2020). https://doi.org/10.1016/j.cam.2019.112476 9. Çeşmelioğlu, A., Rivière, B.:Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40(1), 115-140 (2009). https://doi.org/10.1007/s10915-009-9274-4 10. Ciarlet, P.:The Finite Element Method for Elliptic Problems. SIAM 10(1137/1), 9780898719208 (2002) 11. Cockburn, B., Gopalakrishnan, J., Lazarov, R.:Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319- 1365 (2009). https://doi.org/10.1137/070706616 12. Cockburn, B., Shu, C.-W.:The local discontinuous Galerkin finite element method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440-2463 (1998). https://doi.org/10.1137/S0036142997316712 13. Correa, M.R., Loula, A.F.D.:A unified mixed formulation naturally coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Engrg. 198(33/34/35/36), 2710-2722 (2009). https://doi.org/10.1016/j.cma.2009.03.016 14. D'Angelo, C., Zunino, P.:Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport. ESAIM:M2AN 45(3), 447-476 (2011). https://doi.org/10.1051/m2an/2010062 15. Dawson, C., Proft, J.:A priori error estimates for interior penalty versions of the local discontinuous Galerkin method applied to transport equations. Numer. Meth. Part. Differ. Equat. 17(6), 545-564 (2001). https://doi.org/10.1002/num.1026 16. Dawson, C., Sun, S., Wheeler, M.F.:Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Engrg. 193, 2565-2580 (2004). https://doi.org/10.1016/j.cma.2003.12.059 17. Di Pietro, D.A., Ern, A.:Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques et Applications, vol. 69. Springer-Verlag, Berlin (2012) 18. Discacciati, M., Miglio, E., Quarteroni, A.:Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1), 57-74 (2002). https://doi.org/10.1016/S0168-9274(02)00125-3 19. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.:A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numér. 17(3), 249-265 (1983). https://doi.org/10.1051/m2an/1983170302491 20. Egger, H., Waluga, C.:A hybrid discontinuous Galerkin method for Darcy-Stokes problems. In:Bank, R., Holst, M., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XX, pp. 663-670. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-35275-1_79 21. Fu, G., Lehrenfeld, C.:A strongly conservative hybrid DG/mixed FEM for the coupling of Stokes and Darcy flow. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0691-0 22. Gatica, G.N., Meddahi, S., Oyarzúa, R.:A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29, 86-108 (2009). https://doi.org/10.1093/imanum/drm049 23. Gatica, G.N., Sequeira, F.A.:Analysis of the HDG method for the Stokes-Darcy coupling. Numer. Meth. Part. Differ. Equat. 33(3), 885-917 (2017). https://doi.org/10.1002/num.22128 24. Girault, V., Kanschat, G., Rivière, B.:Error analysis for a monolithic discretization of coupled Darcy and Stokes problems. J. Numer. Math. 22(2), 109-142 (2014). https://doi.org/10.1515/jnma-2014-0005 25. Girault, V., Rivière, B.:DG approximation of coupled Navier-Stokes and Darcy equations by BeaverJoseph-Saffman interface condition. SIAM J. Numer. Anal. 47(3), 2052-2089 (2009). https://doi.org/10.1137/070686081 26. Houston, P., Schwab, C., Süli, E.:Discontinuous hp-finite element methods for advection-diffusionreaction problems. SIAM J. Numer. Anal. 39(6), 2133-2163 (2002). https://doi.org/10.1137/S0036142900374111 27. Hughes, T.J.R., Wells, G.N.:Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 194(9/10/11), 1141-1159 (2005). https://doi.org/10.1016/j.cma.2004.06.034 28. Igreja, I., Loula, A.F.D.:A stabilized hybrid mixed DGFEM naturally coupling Stokes-Darcy flows. Comput. Methods Appl. Mech. Eng. 339, 739-768 (2018). https://doi.org/10.1016/j.cma.2018.05.026 29. Layton, W., Schieweck, F., Yotov, I.:Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195-2218 (2002). https://doi.org/10.1137/S0036142901392766 30. Lipnikov, K., Vassilev, D., Yotov, I.:Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numer. Math. 126(2), 321-360 (2014). https://doi.org/10.1007/s00211-013-0563-3 31. Márquez, A., Meddahi, S., Sayas, F.J.:Strong coupling of finite element methods for the Stokes-Darcy problem. IMA J. Numer. Anal. 35(2), 969-988 (2015). https://doi.org/10.1093/imanum/dru023 32. Nguyen, N.C., Peraire, J., Cockburn, B.:An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228(9), 3232-3254 (2009). https://doi.org/10.1016/j.jcp.2009.01.030 33. Rhebergen, S., Wells, G.N.:An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations. Comput. Methods Appl. Mech. Eng. 358, 112619 (2020). https://doi.org/10.1016/j.cma.2019.112619 34. Rivière, B.:Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22(1), 479-500 (2005). https://doi.org/10.1007/s10915-004-4147-3 35. Riviere, B.:Discontinuous finite element methods for coupled surface-subsurface flow and transport problems. In:Feng, X., Karakashian, O., Xing, Y. (eds.) Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations:2012 John H. Barrett Memorial Lectures, pp. 259-279. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-01818-8_11 36. Rivière, B., Yotov, I.:Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959-1977 (2005). https://doi.org/10.1137/S0036142903427640 37. Saffman, P.:On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50, 292-315 (1971) 38. Schöberl, J.:C++11 implementation of finite elements in NGSolve. Tech. Rep. ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014). http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf 39. Sun, S., Rivière, B., Wheeler, M.F.:A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media. In:Recent Progress in Computational and Applied PDES, pp. 323-351. Springer US, Boston (2002) 40. Vassilev, D., Yotov, I.:Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput. 31(5), 3661- 3684 (2009). https://doi.org/10.1137/080732146 41. Wells, G.N.:Analysis of an interface stabilized finite element method:the advection-diffusion-reaction equation. SIAM J. Numer. Anal. 49(1), 87-109 (2011). https://doi.org/10.1137/090775464 |
[1] | Xiaofeng Cai, Wei Guo, Jing-Mei Qiu. Comparison of Semi-Lagrangian Discontinuous Galerkin Schemes for Linear and Nonlinear Transport Simulations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 3-33. |
[2] | Francis Filbet, Tao Xiong. Conservative Discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 34-59. |
[3] | Zhanjing Tao, Juntao Huang, Yuan Liu, Wei Guo, Yingda Cheng. An Adaptive Multiresolution Ultra-weak Discontinuous Galerkin Method for Nonlinear Schrödinger Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 60-83. |
[4] | Hongjuan Zhang, Boying Wu, Xiong Meng. A Local Discontinuous Galerkin Method with Generalized Alternating Fluxes for 2D Nonlinear Schrödinger Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 84-107. |
[5] | Nils Gerhard, Siegfried Müller, Aleksey Sikstel. A Wavelet-Free Approach for Multiresolution-Based Grid Adaptation for Conservation Laws [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 108-142. |
[6] | Vít Dolejší, Filip Roskovec. Goal-Oriented Anisotropic hp-Adaptive Discontinuous Galerkin Method for the Euler Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 143-179. |
[7] | Yuqing Miao, Jue Yan, Xinghui Zhong. Superconvergence Study of the Direct Discontinuous Galerkin Method and Its Variations for Difusion Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 180-204. |
[8] | Liyao Lyu, Zheng Chen. Local Discontinuous Galerkin Methods with Novel Basis for Fractional Difusion Equations with Non-smooth Solutions [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 227-249. |
[9] | Qi Tao, Yan Xu, Xiaozhou Li. Negative Norm Estimates for Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for Nonlinear Hyperbolic Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 250-270. |
[10] | Haijin Wang, Qiang Zhang. The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Difusion Problems [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 271-292. |
[11] | Yuan Xu, Qiang Zhang. Superconvergence Analysis of the Runge-Kutta Discontinuous Galerkin Method with Upwind-Biased Numerical Flux for Two-Dimensional Linear Hyperbolic Equation [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 319-352. |
[12] | Jie Du, Eric Chung, Yang Yang. Maximum-Principle-Preserving Local Discontinuous Galerkin Methods for Allen-Cahn Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 353-379. |
[13] | F. L. Romeo, M. Dumbser, M. Tavelli. A Novel Staggered Semi-implicit Space-Time Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations [J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 607-647. |
[14] | Zheng Sun, Chi-Wang Shu. Enforcing Strong Stability of Explicit Runge-Kutta Methods with Superviscosity [J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 671-700. |
[15] | Oleksii Beznosov, Daniel Appel?. Hermite-Discontinuous Galerkin Overset Grid Methods for the Scalar Wave Equation [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 391-418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||