1. Angel, J.B., Banks, J.W., Henshaw, W.D.:High-order upwind schemes for the wave equation on overlapping grids:Maxwell's equations in second-order form. J. Comput. Phys. 352, 534-567 (2018) 2. Appelö, D., Banks, J.W., Henshaw, W.D., Schwendeman, D.W.:Numerical methods for solid mechanics on overlapping grids:linear elasticity. J. Comput. Phys. 231(18), 6012-6050 (2012) 3. Appelö, D., Hagstrom, T.:A new discontinuous Galerkin formulation for wave equations in second order form. SIAM J. Numer. Anal. 53(6), 2705-2726 (2015) 4. Appelö, D., Hagstrom, T.:An energy-based discontinuous Galerkin discretization of the elastic wave equation in second order form. Comput. Methods Appl. Mech. Eng. 338, 362-391 (2018) 5. Appelö, D., Hagstrom, T., Vargas, A.:Hermite methods for the scalar wave equation. SIAM J. Sci. Comput. 40(6), A3902-A3927 (2018) 6. Appelö, D., Petersson, N.:A fourth-order accurate embedded boundary method for the wave equation. SIAM J. Sci. Comput. 34(6), A2982-A3008 (2012) 7. Appelö, D., Wang, S.:An energy-based discontinuous Galerkin method for coupled elasto-acoustic wave equations in second-order form. Int. J. Numer. Methods Eng. 119(7), 618-638 (2019) 8. Banks, J.W., Hagstrom, T.:On Galerkin difference methods. J. Comput. Phys. 313, 310-327 (2016) 9. Banks, J.W., Henshaw, W.D.:Upwind schemes for the wave equation in second-order form. J. Comput. Phys. 231(17), 5854-5889 (2012) 10. Björck, Å., Pereyra, V.:Solution of Vandermonde systems of equations. Math. Comput. 24(112), 893-903 (1970) 11. Bruno, O.P., Lyon, M.:High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements. J. Comput. Phys. 229(6), 2009-2033 (2010) 12. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.:A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190-1208 (1995) 13. Chesshire, G., Henshaw, W.D.:Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys. 90(1), 1-64 (1990) 14. Chou, C.S., Shu, C.W., Xing, Y.:Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88-107 (2014) 15. Chung, E.T., Engquist, B.:Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44(5), 2131-2158 (2006) 16. Chung, E.T., Engquist, B.:Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47(5), 3820-3848 (2009) 17. Dahlquist, G., Björck, Å.:Numerical Methods in Scientific Computing, vol. 1. Society for Industrial and Applied Mathematics, PA, USA (2008) 18. Goodrich, J., Hagstrom, T., Lorenz, J.:Hermite methods for hyperbolic initial-boundary value problems. Math. Comput. 75(254), 595-630 (2006) 19. Grote, M.J., Schneebeli, A., Schötzau, D.:Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408-2431 (2006) 20. Hagstrom, T., Appelö, D.:Solving PDEs with Hermite interpolation. In:Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014, pp. 31-49. Springer, Berlin (2015) 21. Hagstrom, T., Hagstrom, G.:Grid stabilization of high-order one-sided differencing II:second-order wave equations. J. Comput. Phys. 231(23), 7907-7931 (2012) 22. Henshaw, W.D.:Ogen:An Overlapping Grid Generator for Overture. Research Report UCRLMA-132237, Lawrence Livermore National Laboratory (1998) 23. Henshaw, W.D.:A high-order accurate parallel solver for Maxwell's equations on overlapping grids. SIAM J. Sci. Comput. 28(5), 1730-1765 (2006) 24. Li, J.R., Greengard, L.:High order marching schemes for the wave equation in complex geometry. J. Comput. Phys. 198(1), 295-309 (2004) 25. Lyon, M., Bruno, O.P.:High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations. J. Comput. Phys. 229(9), 3358-3381 (2010) 26. Mattsson, K., Nordström, J.:Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503-540 (2004) 27. Nguyen, N.C., Peraire, J., Cockburn, B.:High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230(10), 3695-3718 (2011) 28. Petersson, N.A., Sjögreen, B.:High order accurate finite difference modeling of seismo-acoustic wave propagation in a moving atmosphere and a heterogeneous earth model coupled across a realistic topography. J. Sci. Comput. 74(1), 290-323 (2018) 29. Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.:An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748-769 (2016) 30. Sticko, S., Kreiss, G.:Higher order cut finite elements for the wave equation. arXiv:1608.03107 (2016) 31. Sticko, S., Kreiss, G.:A stabilized Nitsche cut element method for the wave equation. Comput. Methods Appl. Mech. Eng. 309, 364-387 (2016) 32. Strikwerda, J.C.:Finite Difference Schemes and Partial Differential Equations, vol. 88. SIAM, Philapedia (2004) 33. Virta, K., Mattsson, K.:Acoustic wave propagation in complicated geometries and heterogeneous media. J. Sci. Comput. 61(1), 90-118 (2014) 34. Wandzura, S.:Stable, high-order discretization for evolution of the wave equation in 2 + 1 dimensions. J. Comput. Phys. 199(2), 763-775 (2004) 35. Wang, S., Virta, K., Kreiss, G.:High order finite difference methods for the wave equation with nonconforming grid interfaces. J. Sci. Comput. 68(3), 1002-1028 (2016) 36. Warburton, T., Hagstrom, T.:Taming the CFL number for discontinuous Galerkin methods on structured meshes. SIAM J. Numer. Anal. 46(6), 3151-3180 (2008) 37. Wilcox, L., Stadler, G., Burstedde, C., Ghattas, O.:A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media. J. Comput. Phys. 229(24), 9373-9396 (2010) |