1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.:Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345-2356 (2010) 2. Beck, A., Teboulle, M.:Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419-2434 (2009) 3. Buades, A., Coll, B., Morel, J.M.:A non-local algorithm for image denoising. In:IEEE International Conference on Computer Vision and Pattern Recognition, pp. 60-65 (2005) 4. Buades, A., Coll, B., Morel, J.M.:A review of image denoising algorithms, with a new one. SIAM Multiscale Model. Simul. 4(2), 490-530 (2005) 5. Buades, A., Coll, B., Morel, J.M.:Image denoising by non-local averaging. In:IEEE International Conference on Acoustics, Speech, and Signal Processing 2, pp. 25-28 (2005) 6. Chambolle, A., Pock, T.:A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120-145 (2011) 7. Chambolle, A.:An algorithm for total variation minimization and application. J. Math. Imaging Vision 20(1/2), 89-97 (2004) 8. Chambolle, A., Lions, P.:Image recovery via total variation minimization and related problems. J. Numer. Math. 76(2), 167-188 (1997) 9. Cai, J., Osher, S., Shen, Z.:Split Bregman methods and frame based image restoration. SIAM Multiscale Model. Simul. 8(2), 337-369 (2009) 10. Combettes, P.:Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5/6), 475-504 (2004) 11. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.:Image denoising by sparse 3-D transformdomain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080-2095 (2007) 12. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.:Image restoration by sparse 3-D transformdomain collaborative filtering. In:Proc. SPIE Electron. Imaging 6812 (2008) 13. Dong, W., Zhang, L., Shi, G.:Centralized sparse representation for image restoration. In:IEEE International Conference on Computer Vision, pp. 1259-1266 (2011) 14. Dong, W., Li, X., Zhang, D., Shi, G.:Sparsity-based image denoising via dictionary learning and structural clustering. In:IEEE International Conference on Computer Vision and Pattern Recognition, pp. 457-464 (2011) 15. Dong, W., Shi, G., Li, X., Ma, Y., Huang, F.:Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 23(8), 3618-3632 (2014) 16. Dong, W., Zhang, L., Lukac, R., Shi, G.:Nonlocal centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620-1630 (2013) 17. Dong, W., Shi, G., Li, X.:Image deblurring with low-rank approximation structured sparse representation. In:IEEE APSIPA ASC (2012) 18. Elad, M., Aharon, M.:Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736-3745 (2006) 19. Galatsanos, N., Katsaggelos, A.:Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans. Image Process. 1(3), 322-336 (1992) 20. Ge, Q., Jing, X., Wu, F., Wei, Z., Xiao, L., Shao, W., Yue, D., Li, H.:Structure-based low-rank model with graph nuclear norm regularization for noise removal. IEEE Trans. Image Process. 26(7), 3098-3112 (2017) 21. Gu, S., Zhang, L., Zuo, W., Feng, X.:Weighted nuclear norm minimization with application to image denoising. In:IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2862-2867 (2014) 22. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.:Weighted nuclear norm minimization and its applications to low level vision. International Journal of Computer Vision 121(2), 183-208 (2017) 23. Ji, H., Liu, C., Shen, Z., Xu, Y.:Robust video denoising using low rank matrix completion. In:IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1791-1798 (2010) 24. Liu, X., Tanaka, M., Okutomi, M.:Single-image noise level estimation for blind denoising. IEEE Trans. Image Process. 22(12), 5226-5237 (2013) 25. Ma, L., Yu, J., Zeng, T.:A dictionary learning approach for Poisson image deblurring. IEEE Trans. Medical Imaging 32(7), 1277-1289 (2013) 26. Ma, L., Xu, L., Zeng, T.:Low rank prior and total variation regularization for image deblurring. Journal of Scientific Computing 70(3), 1336-1357 (2017) 27. Ma, S., Goldfarb, D., Chen, L.:Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. A 128(1), 321-353 (2011) 28. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.:Non-local sparse models for image restoration. In:IEEE International Conference on Computer Vision, pp. 2272-2279 (2009) 29. Mairal, J., Elad, M., Sapiro, G.:Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53-69 (2008) 30. Ng, M.K., Chan, R.H., Tang, W.C.:A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21(3), 851-866 (1999) 31. Ng, M.K., Weiss, P., Yuan, X.:Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods. SIAM J. Sci. Comput. 32(5), 2710-2736 (2010) 32. Paragios, N., Chen, C., Faugeras, O.:Handbook of Mathematical Models in Computer Vision. Springer, New York (2006) 33. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.:RASL:Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233-2246 (2012) 34. Rajwade, A., Rangarajan, A., Banerjee, A.:Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 849-862 (2013) 35. Rudin, L., Osher, S.:Total variation based image restoration with free local constraints. Proc. IEEE ICIP 1, 31-35 (1994) 36. Rudin, L., Osher, S., Fatemi, E.:Nonlinear total variation based noise removal algorithms. Phys. D 60(1/2/3/4), 259-268 (1992) 37. Teuber, T., Lang, A.:Nonlocal filters for removing multiplicative noise. Scale Space and Variational Methods in Computer Vision 6667, 50-61 (2012) 38. Teuber, T., Lang, A.:A new similarity measure for nonlocal filtering in the presence of multiplicative noise. Comput. Statist. Data Anal. 56(12), 3821-3842 (2012) 39. Tikhonov, A.:Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 4, 1035-1038 (1963) 40. Tikhonov, A., Goncharsky, A.:Ill-Posed Problem in Natural Sciences. "Mir Publishers", Moscow (1987) 41. Wang, Y., Yang, J., Yin, W., Zhang, Y.:A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248-272 (2008) 42. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.:Image quality assessment:from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600-612 (2004) 43. Xie, Y., Gu, S., Liu, Y., Zuo, W., Zhang, W., Zhang, L.:Weighted schatten p-norm minimization for image denoising and background subtraction. IEEE Trans. Image Process. 25(10), 4842-4857 (2016) 44. Xie, Q., Meng, D., Gu, S., Zhang, L., Zuo, W., Feng, X., Xu, Z.:On the optimal solution of weighted nuclear norm minimization. Technical Report (2014) 45. Yang, J., Yin, W., Zhang, Y., Wang, Y.:A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569-592 (2009) 46. Yang, J., Zhang, Y., Yin, W.:An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31(4), 2842-2865 (2009) 47. Zhang, C., Hu, W., Jin, T., Mei, Z.:Nonlocal image denoising via adaptive tensor nuclear norm minimization. Neural Comput Appl. 29(1), 3-19 (2018) |