1. Berg, J., Nystrom, K.:A unifed deep artifcial neural network approach to partial diferential equations in complex geometries. Neurocomputing 317, 28-41 (2018) 2. Brunton, S.L., Proctor, J.L., Kutz, J.N.:Discovering governing equations from data by sparse identifcation of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932-3937 (2016) 3. Cahn, J.W., Hilliard, J.E.:Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258-267 (1958) 4. Chen, L., Zhao, J., Gong, Y.:A novel second-order scheme for the molecular beam epitaxy model with slope selection. Commun. Comput. Phys. 4(25), 1024-1044 (2019) 5. E, Weinan., Yu, B.:The deep Ritz method:a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6, 1-12 (2018) 6. Guillen-Gonzalez, F., Tierra, G.:Second order schemes and time-step adaptivity for Allen-Cahn and CahnHilliard models. Comput. Math. Appl. 68(8), 821-846 (2014) 7. Han, D., Wang, X.:A second order in time uniquely solvable unconditionally stable numerical schemes for Cahn-Hilliard-Navier-Stokes equation. J. Comput. Phys. 290(1), 139-156 (2015) 8. Han, J., Jentzen, A., E, Weinan.:Solving high-dimensional partial diferential equations using deep learning. Proc. Natl. Acad. Sci. 115(34), 8505-8510 (2018) 9. Higham, C., Higham, D.:Deep learning:an introduction for applied mathematicians. SIAM Rev. 61(4), 860-891 (2019) 10. Li, B., Tang, S., Yu, H.:Better approximations of high dimensional smooth functions by deep neural networks with rectifed power units. Commun. Comput. Phys. 27, 379-411 (2020) |