1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.:TensorFlow:large-scale machine learning on heterogeneous systems (2015). http://tensorfow.org/ 2. Brooks, J.P.:Support vector machines with the ramp loss and the hard margin loss. Oper. Res. 59, 467-479 (2011) 3. Chang, L.-B.:Partial order relations for classifcation comparisons. The Canadian Journal of Statistics. https://doi.org/10.1002/cjs.11524 (2019) 4. Chollet, F., et al.:Keras. https://keras.io(2015) 5. Frénay, B., Verleysen, M.:Classifcation in the presence of label noise:a survey. IEEE Trans. Neural Netw. Learn. Syst. 25, 845-869 (2014) 6. Ghosh, A., Kumar, H., Sastry, P.:Robust loss functions under label noise for deep neural networks. In:Thirty-First AAAI Conference on Artifcial Intelligence, arXiv:1712.09482v1 (2017) 7. Ghosh, A., Manwani, N., Sastry, P.:Making risk minimization tolerant to label noise. Neurocomputing 160, 93-107 (2015) 8. Graves, A., Mohamed, A.-r., Hinton, G.:Speech recognition with deep recurrent neural networks. In:IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645-6649 (2013) 9. Haber, E., Ruthotto, L.:Stable architectures for deep neural networks. Inverse Probl. 34, 014004 (2017) 10. He, K., Zhang, X., Ren, S., Sun, J.:Deep residual learning for image recognition, In:IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778 (2016) 11. Hendrycks, D., Mazeika, M., Wilson, D., Gimpel, K.:Using trusted data to train deep networks on labels corrupted by severe noise. In:Advances in Neural Information Processing Systems 31, pp. 10477-10486 (2018) 12. Jiang, L., Zhou, Z., Leung, T., Li, L.-J., Fei-Fei, L.:Mentornet:regularizing very deep neural networks on corrupted labels. arXiv:1712.05055 (2017) 13. Khetan, A., Lipton, Z.C., Anandkumar, A.:Learning from noisy singly-labeled data. arXiv:1712.04577 (2017) 14. Kingma, D.P., Ba, J.:Adam:a method for stochastic optimization. arXiv:1412.6980 (2014) 15. Larsen, J., Nonboe, L., Hintz-Madsen, M., Hansen, L.K.:Design of robust neural network classifers. In:Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Cat. No. 98CH36181), vol. 2, IEEE, pp. 1205-1208 (1998) 16. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.:Handwritten digit recognition with a back-propagation network. In:Advances in Neural Information Processing Systems 2 (NIPS 1990), pp. 396-404 (1990) 17. Li, B., Wang, Y., Singh, A., Vorobeychik, Y.:Data poisoning attacks on factorization-based collaborative fltering. In:Advances in Neural Information Processing Systems 29 (NIPS 2016), pp. 1885-1893 (2016) 18. Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., Li, L.-J.:Learning from noisy labels with distillation. In:Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 1910-1918 (2017) 19. Liu, T., Tao, D.:Classifcation with noisy labels by importance reweighting. IEEE Trans. Pattern. Anal. Mach. Intell. 38, 447-461 (2016) 20. Long, P.M., Servedio, R.A.:Random classifcation noise defeats all convex potential boosters. Mach. Learn. 78, 287-304 (2010) 21. Manwani, N., Sastry, P.:Noise tolerance under risk minimization. IEEE Trans. Cybern. 43, 1146-1151 (2013) 22. Masnadi-Shirazi, H., Vasconcelos, N.:On the design of loss functions for classifcation:theory, robustness to outliers, and savageboost. In:Advances in Neural Information Processing Systems 21 (NIPS 2008), pp. 1049-1056 (2008) 23. Menon, A., Van Rooyen, B., Ong, C.S., Williamson, B.:Learning from corrupted binary labels via class-probability estimation. In:International Conference on Machine Learning, pp. 125-134 (2015) 24. Mnih, V., Hinton, G.E.:Learning to label aerial images from noisy data. In:Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp. 567-574 (2012) 25. Nair, V., Hinton, G.E.:Rectifed linear units improve restricted boltzmann machines. In:Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807-814 (2010) 26. Natarajan, N., Dhillon, I.S., Ravikumar, P.K., Tewari, A.:Learning with noisy labels. In:Advances in Neural Information Processing Systems 26, pp. 1196-1204 (2013) 27. Nettleton, D.F., Orriols-Puig, A., Fornells, A.:A study of the efect of diferent types of noise on the precision of supervised learning techniques. Artif. Intell. Rev. 33, 275-306 (2010) 28. Northcutt, C.G., Wu, T., Chuang, I.L.:Learning with confdent examples:rank pruning for robust classifcation with noisy labels. arXiv:1705.01936 (2017) 29. Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., Qu, L.:Making deep neural networks robust to label noise:a loss correction approach. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944-1952 (2017) 30. Ren, M., Zeng, W., Yang, B., Urtasun, R.:Learning to reweight examples for robust deep learning. arXiv:1803.09050 (2018) 31. Steinhardt, J., Koh, P.W.W., Liang, P.S.:Certifed defenses for data poisoning attacks. In:Advances in Neural Information Processing Systems NIPS, pp. 3520-3532 (2017) 32. Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.:Training convolutional networks with noisy labels. arXiv:1406.2080 (2014) 33. Van Rooyen, B., Menon, A., Williamson, R.C.:Learning with symmetric label noise:the importance of being unhinged. In:Advances in Neural Information Processing Systems, pp. 10-18 (2015) 34. Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.:Learning from noisy large-scale datasets with minimal supervision. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 839-847 (2017) 35. Xiao, H., Rasul, K., Vollgraf, R.:Fashion-mnist:a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747 (2017) 36. Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.:Learning from massive noisy labeled data for image classifcation. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2691-2699 (2015) 37. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.:Understanding deep learning requires rethinking generalization. arXiv:1611.03530 (2016) 38. Zhang, J., Yang, Y.:Robustness of regularized linear classifcation methods in text categorization. In:Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, ACM, pp. 190-197 (2003) 39. Zhang, Z., Sabuncu, M.:Generalized cross entropy loss for training deep neural networks with noisy labels. In:The 32nd Conference on Neural Information Processing Systems, pp. 8792-8802 (2018) 40. Zhu, X., Wu, X.:Class noise vs. attribute noise:a quantitative study. Artif. Intell. Rev. 22, 177-210 (2004) |