1. |
Brenner, S.C.:A two-level additive Schwarz preconditioner for macro-element approximations of the plate bending problem. Houst. J. Math. 21, 823-844(1995)2. Brenner, S.C.:A two-level additive Schwarz preconditioner for nonconforming plate elements. Numer. Math. 72, 419-447(1996)3. Brenner, S.C.:Two-level additive Schwarz preconditioners for nonconforming fnite element methods. Math. Comput. 65, 897-921(1996)4. Brenner, S.C., Scott, L.R.:The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)5. Brenner, S.C., Sung, L.:C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83-118(2005)6. Brenner, S.C., Wang, K.:Two-level additive Schwarz preconditioners for C0interior penalty methods. Numer. Math. 102, 231-255(2005)7. Ciarlet, P.G.:The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)8. Cockburn, B., Shu, C.-W.:The local discontinuous Galerkin method for time-dependent convection-difusion systems. SIAM J. Numer. Anal. 35(6), 2440-2463(1998)9. Dryja, M., Widlund, O.B.:Some domain decomposition algorithms for elliptic problems. In:Iterative Methods for Large Linear Systems, pp. 273-291. Academic Press, Boston (1990)10. Dryja, M., Widlund, O.B.:Domain decomposition algorithms with small overlap. SIAM J. Sci. Comput. 15, 604-620(1994)11. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.:Continuous/discontinuous fnite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669-3750(2002)12. Feng, K., Shi, Z.:Mathematical Theory of Elastic Structures. Springer, Berlin (1995)13. Feng, X., Karakashian, O.A.:Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39, 1343-1365(2001)14. Feng, X., Karakashian, O.A.:Two-level non-overlapping Schwarz preconditioners for a discontinuous Galerkin approximation of the biharmonic equation. J. Sci. Comput. 22(23), 289-314(2005)15. Huang, J., Huang, X., Han, W.:A new C0 discontinuous Galerkin method for Kirchhof plates. Comput. Methods Appl. Mech. Eng. 199, 1446-1454(2010)16. Lasser, C., Toselli, A.:An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-difusion problems. Math. Comput. 72, 1215-1238(2003)17. Nepomnyaschikh, S.V.:On the application of the bordering method to the mixed boundary value problem for elliptic equations and on mesh norms in W21∕2(S). Sov. J. Numer. Anal. Math. Model. 4, 493-506(1989)18. Reddy, J.N.:Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, New York (2006)19. Wells, G.N., Dung, N.T.:A C0 discontinuous Galerkin formulation for Kirchhof plates. Comput. Methods Appl. Mech. Eng. 196, 3370-3380(2007)20. Zhang, X.:Two-level Schwarz methods for the biharmonic problem discretized conforming C0 elements. SIAM J. Numer. Anal. 33, 555-570(1996)
|