Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (1): 218-235.doi: 10.1007/s42967-022-00240-y
• REVIEW ARTICLES • Previous Articles Next Articles
Yue Liu1, Jun Xie1, Hay-Oak Park2, Wing-Cheong Lo1
Received:
2022-07-20
Revised:
2022-10-30
Published:
2024-04-16
Contact:
Wing-Cheong Lo,E-mail:wingclo@cityu.edu.hk
E-mail:wingclo@cityu.edu.hk
Supported by:
Yue Liu, Jun Xie, Hay-Oak Park, Wing-Cheong Lo. Mathematical Modeling of Cell Polarity Establishment of Budding Yeast[J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 218-235.
[1] Adams, A.E., Johnson, D.I., Longnecker, R.M., Sloat, B.F., Pringle, John R.:CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111(1), 131-142 (1990) [2] Altschuler, S.J., Angenent, S.B., Wang, Y., Lani, F.W.:On the spontaneous emergence of cell polarity. Nature 454(7206), 886-889 (2008) [3] Banavar, S.P., Trogdon, M., Drawert, B., Yi, T.-M., Petzold, L.R., Campàs, O.:Coordinating cell polarization and morphogenesis through mechanical feedback. PLoS Comput. Biol. 17(1), e1007971 (2021) [4] Bi, E., Park, H.-O.:Cell polarization and cytokinesis in budding yeast. Genetics 191(2), 347-387 (2012) [5] Brinkmann, F., Mercker, M., Richter, T., Marciniak-Czochra, A.:Post-Turing tissue pattern formation:advent of mechanochemistry. PLoS Comput. Biol. 14(7), 1-21 (2018) [6] Bryant, D.M., Mostov, K.E.:From cells to organs:building polarized tissue. Nat. Rev. Mol. Cell Biol. 9(11), 887-901 (2008) [7] Caviston, J.P., Longtine, M., Pringle, J.R., Bi, E.:The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell 14(10), 4051-4066 (2003) [8] Champneys, A.R., Saadi, F.A., Breña-Medina, V.F., Grieneisen, V.A., Marée, A.F.M., Verschueren, N., Wuyts, B.:Bistability, wave pinning and localisation in natural reaction-diffusion systems. Phys. D 416, 132735 (2021) [9] Chiou, J.-G., Ramirez, S.A., Elston, T.C., Witelski, T.P., Schaeffer, D.G., Lew, D.J.:Principles that govern competition or co-existence in Rho-GTPase driven polarization. PLoS Comput. Biol. 14(4), 1-23 (2018) [10] Choi, S.-C., Han, J.-K.:Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway. Dev. Biol. 244(2), 342-357 (2002) [11] Chollet, J., Dünkler, A., Bäuerle, A., Vivero-Pol, L., Mulaw, M.A., Gronemeyer, T., Johnsson, N.:Cdc24 interacts with septins to create a positive feedback loop during bud site assembly in yeast. J. Cell Sci. 133(11), jcs240283 (2020) [12] Clay, L., Caudron, F., Denoth-Lippuner, A., Boettcher, B., Frei, S.B., Snapp, E.L., Barral, Y.:A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. Life 3, e01883 (2014) [13] Cusseddu, D., Edelstein-Keshet, L., Mackenzie, J.A., Portet, S., Madzvamuse, A.:A coupled bulk-surface model for cell polarisation. J. Theor. Biol. 481, 119-135 (2019) [14] Davis, E.E., Katsanis, N.:Cell polarization defects in early heart development. Circ. Res. 101(2), 122-124 (2007) [15] Diekmann, D., Brill, S., Garrett, M.D., Totty, N., Hsuan, J., Monfries, C., Hall, C., Lim, L., Hall, A.:Bcr encodes a GTPase-activating protein for p21rac. Nature 351(6325), 400-402 (1991) [16] Dobbelaere, J., Gentry, M.S., Hallberg, R.L., Barral, Y.:Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell 4(3), 345-357 (2003) [17] Etienne-Manneville, S.:Cdc42-the centre of polarity. J. Cell Sci. 117(8), 1291-1300 (2004) [18] Ewers, H., Tada, T., Petersen, J.D., Racz, B., Sheng, M., Choquet, D.:A septin-dependent diffusion barrier at dendritic spine necks. PLoS One 9(12), e113916 (2014) [19] Finger, F.P., Kopish, K.R., White, J.G.:A role for septins in cellular and axonal migration in C. elegans. Dev. Biol. 261(1), 220-234 (2003) [20] Gibson, M.A., Bruck, J.:Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876-1889 (2000) [21] Giese, W., Eigel, M., Westerheide, S., Engwer, C., Klipp, E.:Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models. Phys. Biol. 12(6), 066014 (2015) [22] Gillespie, D.T.:A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403-434 (1976) [23] Gladfelter, A.S., Pringle, J.R., Lew, D.J.:The septin cortex at the yeast mother-bud neck. Curr. Opin. Microbiol. 4(6), 681-689 (2001) [24] Glise, B., Noselli, S.:Coupling of Jun amino-terminal kinase and Decapentaplegic signaling pathways in Drosophila morphogenesis. Genes Dev. 11(13), 1738-1747 (1997) [25] Goryachev, A.B., Leda, M.:Many roads to symmetry breaking:molecular mechanisms and theoretical models of yeast cell polarity. Mol. Biol. Cell 28(3), 370-380 (2017) [26] Goryachev, A.B., Pokhilko, A.V.:Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett. 582(10), 1437-1443 (2008) [27] Harden, N., Loh, H.Y., Chia, W., Lim, L.:A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila. Development 121(3), 903-914 (1995) [28] Hart, M.J., Eva, A., Evans, T., Aaronson, S.A., Cerione, R.A.:Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbloncogene product. Nature 354(6351), 311-314 (1991) [29] Howell, A.S., Jin, M., Chi-Fang, W., Zyla, T.R., Elston, T.C., Lew, D.J.:Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell 149(2), 322-333 (2012) [30] Howell, A.S., Savage, N.S., Johnson, S.A., Bose, I., Wagner, A.W., Zyla, T.R., Frederik, N.H., Reed, M.C., Goryachev, A.B., Lew, D.J.:Singularity in polarization:rewiring yeast cells to make two buds. Cell 139(4), 731-743 (2009) [31] Hsu, C.L., Muerdter, C.P., Knickerbocker, A.D., Walsh, R.M., Zepeda-Rivera, M.A., Depner, K.H., Sangesland, M., Cisneros, T.B., Kim, J.Y., Sanchez-Vazquez, P., Cherezova, L., Regan, R.D., Bahrami, N.M., Gray, E.A., Chan, A.Y., Chen, T., Rao, M.Y., Hille, M.B.:Cdc42 GTPase and Rac1 GTPase act downstream of p120 catenin and require GTP exchange during gastrulation of zebrafish mesoderm. Dev. Dyn. 241(10), 1545-1561 (2012) [32] Hu, Q., Milenkovic, L., Jin, H., Scott, M.P., Nachury, M.V., Spiliotis, E.T., James Nelson, W.:A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329(5990), 436-439 (2010) [33] Iwase, M., Luo, J., Nagaraj, S., Longtine, M., Kim, H.B., Haarer, B.K., Caruso, C., Tong, Z., Pringle, J.R., Bi, E.:Role of a Cdc42p effector pathway in recruitment of the yeast septins to the presumptive bud site. Mole. Biol. Cell 17(3), 1110-1125 (2006) [34] Jilkine, A., Angenent, S.B., Wu, L.F., Altschuler, S.J.:A density-dependent switch drives stochastic clustering and polarization of signaling molecules. PLoS Comput. Biol. 7(11), e1002271 (2011) [35] Johnson, D.I., Pringle, J.R.:Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol. 111(1), 143-152 (1990) [36] Kozubowski, L., Larson, J.R., Tatchell, K.:Role of the septin ring in the asymmetric localization of proteins at the mother-bud neck in Saccharomyces cerevisiae. Mol. Biol. Cell 16(8), 3455-3466 (2005) [37] Kozubowski, L., Saito, K., Johnson, J.M., Howell, A.S., Zyla, T.R., Lew, D.J.:Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr. Biol. 18(22), 1719-1726 (2008) [38] Kwitny, S., Klaus, A.V., Hunnicutt, G.R.:The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol. Reprod. 82(4), 669-678 (2010) [39] Lawson, M.J., Drawert, B., Khammash, M., Petzold, L., Yi, T.-M.:Spatial stochastic dynamics enable robust cell polarization. PLoS Comput. Biol. 9(7), 1-12 (2013) [40] Lee, M.E., Lo, W.-C., Miller, K.E., Chou, C.-S., Park, H.-O.:Regulation of Cdc42 polarization by the Rsr1 GTPase and Rga1, a Cdc42 GTPase-activating protein, in budding yeast. J. Cell Sci. 128(11), 2106-2117 (2015) [41] Liu, Y., Lo, W.-C.:Analysis of spontaneous emergence of cell polarity with delayed negative feedback. Math. Biosci. Eng. 16(3), 1392-1413 (2019) [42] Liu, Y., Lo, W.-C.:Deterministic and stochastic analysis for different types of regulations in the spontaneous emergence of cell polarity. Chaos, Solitons and Fractals 144, 110620 (2021) [43] Lo, W.-C., Lee, M.E., Narayan, M., Chou, C.-S., Pak, H.-O.:Polarization of diploid daughter cells directed by spatial cues and GTP hydrolysis of Cdc42 in budding yeast. PLoS One 8(2), 1-14 (2013) [44] Lo, W.-C., Park, H.-O., Chou, C.-S.:Mathematical analysis of spontaneous emergence of cell polarity. Bull. Math. Biol. 76(8), 1835-1865 (2014) [45] Mahapatra, A., Saintillan, D., Rangamani, P.:Transport phenomena in fluid films with curvature elasticity. J. Fluid Mech. 905, A8 (2020) [46] Marco, E., Wedlich-Soldner, R., Li, R., Altschuler, S.J., Lani, F.W.:Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity. Cell 129(2), 411-422 (2007) [47] Maroudas-Sacks, Y., Garion, L., Shani-Zerbib, L., Livshits, A., Braun, E., Keren, K.:Topological defects in the nematic order of actin fibres as organization centres of Hydra morphogenesis. Nat. Phys. 17(2), 251-259 (2021) [48] McMurray, M.A., Thorner, J.:Septins:molecular partitioning and the generation of cellular asymmetry. Cell Div. 4(1), 1-14 (2009) [49] Mietke, A., Jülicher, F., Sbalzarini, I.F.:Self-organized shape dynamics of active surfaces. Proc. Natl. Acad. Sci. U.S.A. 116(1), 29-34 (2019) [50] Mori, Y., Jilkine, A., Edelstein-Keshet, L.:Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J. 94(9), 3684-3697 (2008) [51] Murphy, L., Madzvamuse, A.:A moving grid finite element method applied to a mechanobiochemical model for 3D cell migration. Appl. Numer. Math. 158, 336-359 (2020) [52] Noselli, S.:JNK signaling and morphogenesis in Drosophila. Trends Genet. 14(1), 33-38 (1998) [53] Okada, S., Leda, M., Hanna, J., Savage, N.S., Bi, E., Goryachev, A.B.:Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis. Dev. Cell 26(2), 148-161 (2013) [54] Ozbudak, E.M., Becskei, A., van Oudenaarden, A.:A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Dev. Cell 9(4), 565-571 (2005) [55] Pablo, M., Ramirez, S.A., Elston, T.C.:Particle-based simulations of polarity establishment reveal stochastic promotion of turing pattern formation. PLoS Comput. Biol. 14(3), 1-25 (2018) [56] Park, H.-O., Bi, E.:Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol. Mol. Biol. Rev. 71(1), 48-96 (2007) [57] Rätz, A., Röger, M.:Symmetry breaking in a bulk-surface reaction-diffusion model for signalling networks. Nonlinearity 27(8), 1805-1827 (2014) [58] Rubinstein, B., Slaughter, B.D., Li, R.:Weakly nonlinear analysis of symmetry breaking in cell polarity models. Phys. Biol. 9(4), 045006 (2012) [59] Sarfaraz, W., Madzvamuse, A.:Classification of parameter spaces for a reaction-diffusion model on stationary domains. Chaos, Solitons and Fractals 103, 33-51 (2017) [60] Sepúlveda-Ramírez, S.P., Toledo-Jacobo, L., Henson, J.H., Shuster, C.B.:Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo. Dev. Biol. 437(2), 140-151 (2018) [61] Shinoda, T., Ito, H., Sudo, K., Iwamoto, I., Morishita, R., Nagata, K.:Septin 14 is involved in cortical neuronal migration via interaction with septin 4. Mol. Biol. Cell 21(8), 1324-1334 (2010) [62] Slaughter, B.D., Das, A., Schwartz, J.W., Rubinstein, B., Li, R.:Dual modes of Cdc42 recycling fine-tune polarized morphogenesis. Dev. Cell 17(6), 823-835 (2009) [63] Slaughter, B.D., Smith, S.E., Li, R.:Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harb. Perspect. Biol. 1(3), 18 (2009) [64] Stinner, B., Dedner, A., Nixon, A.:A finite element method for a fourth order surface equation with application to the onset of cell blebbing. Front. Appl. Math. Stat. 6, 21 (2020) [65] Takizawa, P.A., DeRisi, J.L., Wilhelm, J.E., Vale, R.D.:Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290(5490), 341-344 (2000) [66] Tcheperegine, S.E., Gao, X.-D., Bi, E.:Regulation of cell polarity by interactions of Msb3 and Msb4 with Cdc42 and polarisome components. Mol. Cell. Biol. 25(19), 8567-8580 (2005) [67] Tooley, A.J., Gilden, J., Jacobelli, J., Beemiller, P., Trimble, W.S., Kinoshita, M., Krummel, M.F.:Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat. Cell Biol. 11(1), 17-26 (2009) [68] Torres-Sánchez, A., Millán, D., Arroyo, M.:Modelling fluid deformable surfaces with an emphasis on biological interfaces. J. Fluid Mech. 872, 218-271 (2019) [69] Trogdon, M., Drawert, B., Gomez, C., Banavar, S.P., Yi, T.-M., Campàs, O., Petzold, L.R.:The effect of cell geometry on polarization in budding yeast. PLoS Comput. Biol. 14(6), 1-22 (2018) [70] Trong, P.K., Nicola, E.M., Goehring, N.W., Vijay Kumar, K., Grill, S.W.:Parameter-space topology of models for cell polarity. New J. Phys. 16(6), 065009 (2014) [71] Tsai, K., Britton, S., Nematbakhsh, A., Zandi, R., Chen, W., Alber, M.:Role of combined cell membrane and wall mechanical properties regulated by polarity signals in cell budding. Phys. Biol. 17(6), 065011 (2020) [72] Turing, A.M.:The chemical basis of morphogenesis. Bull. Math. Biol. 52(1), 153-197 (1990) [73] Walther, G.R., Marée, A.F.M., Edelstein-Keshet, L., Grieneisen, V.A.:Deterministic versus stochastic cell polarisation through wave-pinning. Bull. Math. Biol. 74(11), 2570-2599 (2012) [74] Wu, C.-F., Lew, D.J.:Beyond symmetry-breaking:competition and negative feedback in GTPase regulation. Trends Cell Biol. 23(10), 476-483 (2013) [75] Zmurchok, C., Collette, J., Rajagopal, V., Holmes, W.R.:Membrane tension can enhance adaptation to maintain polarity of migrating cells. Biophys. J. 119(8), 1617-1629 (2020) |
No related articles found! |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 19
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 285
|
|
|||||||||||||||||||||||||||||||||||||||||||||