1. Abgrall, R.:On essentially non-oscillatory schemes on unstructured meshes:analysis and implementation. J. Comput. Phys. 144, 45-58 (1994) 2. Armanini, A.:Principles of River Hydraulics. Springer, Berlin (2017) 3. Audusse, E., Berthon, C., Chalons, C., Delestre, O., Goutal, N., Jodeau, M., Sainte-Marie, J., Giesselmann, J., Sadaka, G.:Sediment transport modelling:relaxation schemes for Saint-Venant-Exner and three layer models. In:CEMRACS'11:Multiscale Coupling of Complex Models in Scientific Computing, ESAIM Proceedings, vol. 38, pp. 78-98. EDP Science, Les Ulis (2012) 4. Besse, N., Sonnendrucker, E.:Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. J. Comput. Phys. 191, 341-376 (2003) 5. Bonaventura, L.:A semi-implicit semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows. J. Comput. Phys. 158, 186-213 (2000) 6. Bonaventura, L., Ferretti, R., Rocchi, L.:A fully semi-Lagrangian discretization for the 2D incompressible Navier-Stokes equations in the vorticity-stream function formulation. Appl. Math. Comput. 323, 132-144 (2018) 7. Boscheri, W.:High order direct arbitrary-Lagrangian-Eulerian (ALE) finite volume schemes for hyperbolic systems on unstructured meshes. Arch. Comput. Methods Eng. 24, 751-801 (2017) 8. Boscheri, W.:A space-time semi-Lagrangian advection scheme on staggered Voronoi meshes applied to free surface flows. Comput. Fluids 202, 104503 (2020) 9. Boscheri, W., Dumbser, M., Righetti, M.:A semi-implicit scheme for 3D free surface flows with high-order velocity reconstruction on unstructured Voronoi meshes. Int. J. Numer. Methods Fluids 72, 607-631 (2013) 10. Boscheri, W., Pisaturo, G.R., Righetti, M.:High-order divergence-free velocity reconstruction for free surface flows on unstructured Voronoi meshes. Int. J. Numer. Methods Fluids 90(6), 296-321 (2019) 11. Boyaval, S., Caboussat, A., Mrad, A., Picasso, M., Steiner, G.:A semi-Lagrangian splitting method for the numerical simulation of sediment transport with free surface flows. Comput. Fluids 172, 384-396 (2018) 12. Bradford, S., Katopodes, N.:Hydrodynamics of turbid underflows. I:formulation and numerical analysis. J. Hydraul. Eng. 125, 1006-1015 (1999) 13. Cao, Z., Pender, G., Wallis, S., Carling, P.:Computational dam-break hydraulics over erodible sediment bed. J. Hydraul. Eng. 130(7), 689-703 (2004) 14. Carlini, E., Falcone, M., Ferretti, R.:Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175, 559-575 (2002) 15. Carlini, E., Falcone, M., Ferretti, R.:A semi-Lagrangian scheme for the curve shortening flow in codimension-2. J. Comput. Phys. 225, 1388-1408 (2007) 16. Carlini, E., Ferretti, R.:A semi-Lagrangian approximation for the AMSS model of image processing. Appl. Numer. Math. 73, 16-32 (2013) 17. Carrillo, J., Majorana, A., Vecil, F.:A semi-Lagrangian deterministic solver for the semiconductor Boltzmann-Poisson system. Commun. Comput. Phys. 5, 1027-1054 (2007) 18. Castro Díaz, M.J., Fernández-Nieto, E.D., Ferreiro, A.M., Parés, C.:Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes. Comput. Methods Appl. Mech. Eng. 198(33/34/35/36), 2520-2538 (2009) 19. Casulli, V.:Semi-implicit finite difference methods for the two-dimensional shallow water equations. J. Comput. Phys. 86, 56-74 (1990) 20. Casulli, V.:A semi-implicit finite difference method for non-hydrostatic free-surface flows. Int. J. Numer. Methods Fluids 30, 425-440 (1999) 21. Casulli, V.:A high-resolution wetting and drying algorithm for free-surface hydrodynamics. Int. J. Numer. Methods Fluids 60, 391-408 (2009) 22. Casulli, V., Cattani, E.:Stability, accuracy and efficiency of a semi-implicit method for threedimensional shallow water flow. Comput. Math. Appl. 27, 99-112 (1994) 23. Casulli, V., Cheng, R.:Semi-implicit finite difference methods for three-dimensional shallow water flow. Int. J. Numer. Methods Fluids 15, 629-648 (1992) 24. Casulli, V., Walters, R.:An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Methods Fluids 32, 331-348 (2000) 25. Courant, R., Isaacson, E., Rees, M.:On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Math. 5, 243-255 (1952) 26. Crouseilles, N., Mehrenberger, M., Sonnendrucker, E.:Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229, 1927-1953 (2010) 27. Das, S.K., Weaver, A.:Semi-Lagrangian advection algorithms for ocean circulation models. J. Atmos. Ocean. Technol. 12, 935-950 (1995) 28. Dumbser, M., Käser, M.:Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693-723 (2007) 29. Ferguson, R., Church, M.:A simple universal equation for grain settling velocity. J. Sediment. Res. 74(6), 933-937 (2004) 30. Garegnani, G., Rosatti, G., Bonaventura, L.:Free surface flows over mobile bed:mathematical analysis and numerical modeling of coupled and decoupled approaches. Commun. Appl. Ind. Math. 2(1), e371 (2011). https://doi.org/10.1685/journal.caim.371 31. Huang, C., Arbogast, T., Qiu, J.:An Eulerian-Lagrangian WENO finite volume scheme for advection problems. J. Comput. Phys. 231, 4028-4052 (2012) 32. Iske, A., Käser, M.:Conservative semi-Lagrangian advection on adaptive unstructured meshes. Numer. Methods Partial Differ. Equ. 20, 388-411 (2004) 33. Käser, M., Iske, A.:ADER schemes on adaptive triangular meshes for scalar conservation laws. J. Comput. Phys. 205, 486-508 (2005) 34. Khan, S., Imran, J., Bradford, S., Syvitski, J.:Numerical modeling of hyperpycnal plume. Mar. Geol. 222/223, 193-211 (2005) 35. Kubo, Y.:Experimental and numerical study of topographic effects on deposition from two-dimensional, particle-driven density currents. Sediment. Geol. 164, 311-326 (2004) 36. Lentine, M., Grétarsson, J.T., Fedkiw, R.:An unconditionally stable fully conservative semi-Lagrangian method. J. Comput. Phys. 230, 2857-2879 (2011) 37. McDonald, A.:A semi-Lagrangian and semi-implicit two time-level integration scheme. Mon. Weather Rev. 114, 824-830 (1986) 38. Merritt, W., Letcher, R., Jakeman, A.:A review of erosion and sediment transport models. Environ. Model. Softw. 18(8/9), 761-799 (2003) 39. Nguyen, D., Levy, F., Pham Van Bang, D., Guillou, S., Nguyen, K., Chauchat, J.:Simulation of dredged sediment releases into homogeneous water using a two-phase model. Adv. Water Resour. 48, 102-112 (2012) 40. Qiu, J.M., Shu, C.W.:Conservative high order semi-Lagrangian finite difference Weno methods for advection in incompressible flow. J. Comput. Phys. 230, 863-889 (2011) 41. Robert, A.:A stable numerical integration scheme for the primitive meteorological equations. Atmos. Ocean 19, 35-46 (1981) 42. Stroud, A.:Approximate Calculation of Multiple Integrals. Prentice-Hall Inc., Englewood Cliffs (1971) 43. Walters, R., Casulli, V.:A robust finite element model for hydrostatic surface water flows. Commun. Numer. Methods Eng. 14, 931-940 (1998) 44. Welander, P.:Studies on the general development of motion in a two-dimensional ideal fluid. Tellus 17, 141-156 (1955) 45. Wiin-Nielson, A.:On the application of trajectory methods in numerical forecasting. Tellus 11, 180- 186 (1959) 46. Yearsley, J.:A semi-Lagrangian water temperature model for advection-dominated river systems. Water Res. 45, 1-19 (2009) |