1. Boumenir, A., Tuan, V.K.:Recovery of the heat coefficient by two measurements. Inverse Problems Imaging 5(4), 775-791 (2011) 2. Boumenir, A., Tuan, V.K.:Recovery of the heat equation from a single boundary measurement. Appl. Anal. 97(10), 1667-1676 (2018) 3. Boumenir, A., Tuan, V.K.:Inverse problems for multidimensional heat equations by measurements at a single point on the boundary. Numer. Funct. Anal. Optim. 30(11/12), 1215-1230 (2009) 4. Boumenir, A., Tuan, V.K., Nguyen, N.:The recovery of a parabolic equation from measurements at a single point. Evol. Equ. Control Theory 7(2), 197-216 (2018) 5. Cao, K., Lesnic, D.:Reconstruction of the perfusion coefficient from temperature measurements using the conjugate gradient method. Int. J. Comput. Math. 95(4), 797-814 (2018) 6. Coddington, E.A., Levinson, N.:Theory of Ordinary Differential Equations. McGraw-Hill (1955) 7. Cordaro, P.D., Kawano, A.:A uniqueness result for the recovery of a coefficient of the heat conduction equation. Inverse Problems 23(3), 1069-1085 (2007) 8. Huntul, M.J., Lesnic, D., Hussein, M.S.:Reconstruction of time dependent coefficients from heat moments. Appl. Math. Comput. 301, 233-253 (2017) 9. Kirsch, A.:An introduction to the Mathematical Theory of Inverse Problems, Applied Mathematical Sciences 120. Springer, New York (1996) 10. Kravchenko, V.V.:On a method for solving the inverse Sturm-Liouville problem. J. Inverse Ill-Posed Probl. 27(3), 401-407 (2019) 11. Prilepko, A.I., Orlovsky, D.G., Vasin, I.A.:Methods for Solving Inverse Problems in Mathematical Physics, 1st edn. CRC Press, New York (2000) |