1. Asher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial diferential equations. Appl. Numer. Math. 25, 151–167 (1997) 2. Asher, U.M., Ruuth, S.J., Wetton, B.: Implicit-explicit methods for time dependent PDE’s. SIAM J. Numer. Anal. 32, 797–823 (1995) 3. Butcher, J.C.: Diagonally-implicit multi-stage integration methods. Appl. Numer. Math. 11, 347–363 (1993) 4. Butcher, J.C., Jackiewicz, Z.: Diagonally implicit general linear methods for ordinary diferential equations. BIT 33, 452–472 (1993) 5. Butcher, J.C., Wright, W.M.: The construction of practical general linear methods. BIT 43, 695–721 (2003) 6. Califano, G., Izzo, G., Jackiewicz, Z.: Starting procedures for general linear methods. Appl. Numer. Math. 120, 165–175 (2017) 7. Califano, G., Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods with RungeKutta stability. J. Sci. Comput. 76, 943–968 (2018) 8. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolated implicit-explicit Runge-Kutta methods. Math. Model. Anal. 19, 18–43 (2014) 9. Conde, S., Gottlieb, S., Grant, Z.J., Shadid, J.N.: Implicit and implicit-explicit strong stability preserving Runge-Kutta methods with high linear order. J. Sci. Comput. 73, 667–690 (2017) 10. Constantinescu, E.M., Sandu, A.: Optimal strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130–3150 (2010) 11. Enright, W.H.: Second derivative multistep methods for stif ordinary diferential equations. SIAM J. Numer. Anal. 11, 321–331 (1974) 12. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu-Osher representation of RungeKutta methods. Math. Comput. 74, 201–219 (2004) 13. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004) 14. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-boundedness in general RungeKutta procedures. Appl. Numer. Math. 53, 265–279 (2005) 15. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge-Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008) 16. Gottlieb, S.: On high order strong stability preserving Runge-Kutta methods and multistep time discretizations. J. Sci. Comput. 25, 105–127 (2005) 17. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009) 18. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientifc, New Jersey (2011) 19. Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time stepping schemes with fast downwind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006) 20. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001) 21. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Diferential Equations I: Nonstif Problems. Springer-Verlag, New York (1993) 22. Hairer, E., Wanner, G.: Solving Ordinary Diferential Equations Ⅱ. Stif and Diferential-Algebraic Problems. Springer Verlag, Berlin (1996) 23. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004) 24. Higueras, I.: Monotonicity for Runge-Kutta methods: inner product norms. J. Sci. Comput. 24, 97–117 (2005) 25. Higueras, I.: Representations of Runge-Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005) 26. Higueras, I., Happenhofer, N., Koch, O., Kupka, F.: Optimized strong stability preserving IMEX Runge-Kutta methods. J. Comput. Appl. Math. 272, 116–140 (2014) 27. Hofer, E.: A partially implicit method for large stif systems of ODE’s with only few equations introducing small time-constants. SIAM J. Numer. Anal. 13, 645–663 (1976) 28. Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75, 655–672 (2005) 29. Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007) 30. Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003) 31. Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271– 298 (2015) 32. Izzo, G., Jackiewicz, Z.: Strong stability preserving multistage integration methods. Math. Model. Anal. 20, 552–577 (2015) 33. Izzo, G., Jackiewicz, Z.: Highly stable implicit-explicit Runge-Kutta methods. Appl. Numer. Math. 113, 71–92 (2017) 34. Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. 343, 174–188 (2018) 35. Izzo, G., Jackiewicz, Z.: Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part. Numer. Algorithms 81, 1343–1359 (2019) 36. Jackiewicz, Z.: General Linear Methods for Ordinary Diferential Equations. John Wiley, Hoboken (2009) 37. Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge-Kutta methods for ordinary diferential equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995) 38. Jin, S.: Runge-Kutta methods for hyperbolic systems with stif relaxation terms. J. Comput. Phys. 122, 51–67 (1995) 39. Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge-Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011) 40. Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005) 41. Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005) 42. Shu, C.-W.: High order ENO and WENO schemes for computational fuid dynamics. In: Barth, T.J., Deconinck, H. (eds) High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9, pp. 439–582. Springer, Berlin (1999) 43. Shu, C.-W., Osher, S.: Efcient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) 44. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007) 45. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002) 46. Van der Houwen, P.J.: Explicit Runge-Kutta formulas with increased stability boundaries. Numer. Math. 20, 149–164 (1972) 47. Wright, W.: General linear methods with inherent Runge-Kutta stability. Ph.D. thesis. The University of Auckland, New Zealand (2002) 48. Wright, W.: Explicit general linear methods with inherent Runge-Kutta stability. Numer. Algorithms 31, 381–399 (2002) 49. Zhang, H., Sandu, A., Blaise, S.: Partitioned and implicit-explicit general linear methods for ordinary diferential equations. J. Sci. Comput. 61, 119–144 (2014) |