1. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015). https://doi.org/10.11588/ans.2015.100.20553 2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial diferential equations. Appl. Numer. Math. 25(2/3), 151–167 (1997) 3. Ascher, U.M., Ruuth, S.J., Wetton, B.T.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995) 4. Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31(3), 1926–1945 (2009) 5. Braś, M., Cardone, A., Jackiewicz, Z., Pierzchała, P.: Error propagation for implicit-explicit general linear methods. Appl. Numer. Math. 131, 207–231 (2018). https://doi.org/10.1016/j.apnum.2018.05.004 6. Braś, M., Izzo, G., Jackiewicz, Z.: Accurate implicit-explicit general linear methods with inherent Runge–Kutta stability. J. Sci. Comput. 70(3), 1105–1143 (2017) 7. Butcher, J.C.: Diagonally-implicit multi-stage integration methods. Appl. Numer. Math. 11(5), 347–363 (1993) 8. Butcher, J.C.: General linear methods for the parallel solution of ordinary diferential equations. In: Contributions in Numerical Mathematics, pp. 99–111. World Scientifc, Singapore (1993) 9. Butcher, J.C.: Order and stability of parallel methods for stif problems. Adv. Computat. Math. 7(1/2), 79–96 (1997) 10. Butcher, J.C., Chartier, P.: Parallel general linear methods for stif ordinary diferential and diferential algebraic equations. Appl. Numer. Math. 17(3), 213–222 (1995). https://doi.org/10.1016/0168-9274(95)00029-T 11. Califano, G., Izzo, G., Jackiewicz, Z.: Starting procedures for general linear methods. Appl. Numer. Math. 120, 165–175 (2017). https://doi.org/10.1016/J.APNUM.2017.05.009 12. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolated IMEX Runge–Kutta methods. Math. Model. Anal. 19(2), 18–43 (2014). https://doi.org/10.3846/13926292.2014.892903 13. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolation-based implicit-explicit general linear methods. Numer. Algorithms 65(3), 377–399 (2014). https://doi.org/10.1007/s11075-013-9759-y 14. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Construction of highly stable implicit-explicit general linear methods. In: AIMS proceedings, vol. 2015. Dynamical Systems, Diferential Equations, and Applications, pp. 185–194. Madrid, Spain (2015). https://doi.org/10.3934/proc.2015.0185 15. Computational Science Laboratory: ODE test problems (2020). https://github.com/Computatio nalScienceLaboratory/ODE-Test-Problems 16. Connors, J.M., Miloua, A.: Partitioned time discretization for parallel solution of coupled ODE systems. BIT Numer. Math. 51(2), 253–273 (2011). https://doi.org/10.1007/s10543-010-0295-z 17. Constantinescu, E., Sandu, A.: Extrapolated implicit-explicit time stepping. SIAM J. Sci. Comput. 31(6), 4452–4477 (2010). https://doi.org/10.1137/080732833 18. Ditkowski, A., Gottlieb, S., Grant, Z.J.: IMEX error inhibiting schemes with post-processing. arXiv:1912.10027 (2019) 19. Frank, J., Hundsdorfer, W., Verwer, J.: On the stability of implicit-explicit linear multistep methods. Appl. Numer. Math. 25(2/3), 193–205 (1997) 20. Hairer, E., Wanner, G.: Solving ordinary diferential equations Ⅱ: stif and diferential-algebraic problems, 2 edn. No. 14. In: Springer Series in Computational Mathematics. Springer, Berlin (1996) 21. Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225(2), 2016–2042 (2007) 22. Izzo, G., Jackiewicz, Z.: Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part. Numer. Algorithms 81(4), 1343–1359 (2019) 23. Jackiewicz, Z.: General Linear Methods for Ordinary Diferential Equations. Wiley, Amsterdam (2009) 24. Jackiewicz, Z., Mittelmann, H.: Construction of IMEX DIMSIMs of high order and stage order. Appl. Numer. Math. 121, 234–248 (2017). https://doi.org/10.1016/j.apnum.2017.07.004 25. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-difusion-reaction equations. Appl. Numer. Math. 44(1/2), 139–181 (2003). https://doi.org/10.1016/S0168-9274(02)00138-1 26. Kennedy, C.A., Carpenter, M.H.: Higher-order additive Runge–Kutta schemes for ordinary differential equations. Appl. Numer. Math. 136, 183–205 (2019). https://doi.org/10.1016/j.apnum.2018.10.007 27. Lang, J., Hundsdorfer, W.: Extrapolation-based implicit-explicit peer methods with optimised stability regions. J. Comput. Phys. 337, 203–215 (2017) 28. Pareschi, L., Russo, G.: Implicit-explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1), 129–155 (2005) 29. Roberts, S., Popov, A.A., Sandu, A.: ODE test problems: a MATLAB suite of initial value problems (2019). arXiv:1901.04098 30. Sarshar, A., Roberts, S., Sandu, A.: Alternating directions implicit integration in a general linear method framework. J. Comput. Appl. Math., 112619 (2019). https://doi.org/10.1016/j.cam.2019.112619 31. Schneider, M., Lang, J., Hundsdorfer, W.: Extrapolation-based super-convergent implicit-explicit peer methods with A-stable implicit part. J. Comput. Phys. 367, 121–133 (2018) 32. Soleimani, B., Weiner, R.: Superconvergent IMEX peer methods. Appl. Numer. Math. 130, 70–85 (2018) 33. Zhang, H., Sandu, A.: A second-order diagonally-implicit-explicit multi-stage integration method. In: Proceedings of the International Conference on Computational Science, ICCS 2012, vol. 9, pp. 1039–1046 (2012). https://doi.org/10.1016/j.procs.2012.04.112 34. Zhang, H., Sandu, A., Blaise, S.: Partitioned and implicit-explicit general linear methods for ordinary diferential equations. J. Sci. Comput. 61(1), 119–144 (2014). https://doi.org/10.1007/s10915-014-9819-z 35. Zhang, H., Sandu, A., Blaise, S.: High order implicit-explicit general linear methods with optimized stability regions. SIAM J. Sci. Comput. 38(3), A1430–A1453 (2016). https://doi.org/10.1137/15M1018897 36. Zharovsky, E., Sandu, A., Zhang, H.: A class of IMEX two-step Runge–Kutta methods. SIAM J. Numer. Anal. 53(1), 321–341 (2015). https://doi.org/10.1137/130937883 |